
Finding faults in multi-threaded programs

Cyrille Artho

03/15/2001

Abstract

Multi-threaded programming creates the fundamental problem that the execution of a
program is no longer deterministic, because the thread schedule is not controlled by the
application. This causes traditional testing methods to be rather ineffective. Trilogy,
producing many multi-threaded server programs, also has to deal with the limitations
of regression testing. New approaches to this problem – static and extended dynamic
checking – promise to ameliorate the situation. Many tools are in development that try
to find faults in multi-threaded programs in new ways.

The first part of this report describes a detailed evaluation of a wide variety of
dynamic and static checkers. That comparison always had the applicability to industrial
software in mind. While none of the checking tools was a clear winner, certain tools
are more useful in practice than others.

Because simple cases are the most common ones in practice, the decision was made
to extend Jlint, a simple, fast static Java program checker. The new Jlint can now also
check for deadlocks in synchronized blocks in Java, which results in improved fault-
finding capabilities. The extensions and their usefulness in an industrial environment
are described in the second part of the report. Jlint has been applied to many core pack-
ages of Trilogy, and also a few other software packages, and shown various degrees of
success.

Acknowledgements

I would like to thank Prof. Armin Biere from the Swiss Federal Institute of Technology
for supervising my thesis and taking the risk of working across 5000 miles and seven
hours time difference, and for taking the time to proofread the report meticulously and
having the patience for revising the definitions several times until they were right.

I would also like to thank Trilogy for taking the challenge of hosting their first
thesis, and in particular Bernhard Seybold and Runako Godfrey, who supervised my
work. Especially Bernhard Seybold gave me much valuable advice and took the time
to run different versions of Jlint on his program, which gave me feedback early on. He
also proofread most of the report, and his suggestions helped to improve it.

Many more people helped me at Trilogy, so I cannot list them all here. Special
thanks go to Razvan Surdulescu, Dave Griffith and Ruwei Hu for verifying my anno-
tated Jlint warnings.

More thanks go to Konstantin Knizhnik, the author of Jlint, who helped me to
understand his code and the ideas behind it, K. Rustan M. Leino from Compaq for
answering some ESC/Java related questions, Derek L. Bruening for supplying me the
Rivet executables, Moonjoo Kim from the University of Pennsylvania for answering
my MaC inquiries, Klaus Havelund from the NASA Ames for his suggestions and his
efforts to make JPF(2) available (although it did not work out in the end), and Christoph
von Praun from the Swiss Federal Institute of Technology for his feedback about my
analysis of his data warehousing package.

Contents

1 Introduction 1
1.1 Multi-threading problems . 1
1.2 Existing checkers . 3
1.3 Multi-threaded programming in Java 5
1.4 Comparison of Java program checkers 5
1.5 Extension of a Java program checker 6
1.6 Structure of this report . 6

2 Existing work 8
2.1 Dynamic checking . 8
2.2 Static checking . 9
2.3 Interface specification . 10
2.4 Summary . 10

3 Evaluation stage 12
3.1 Evaluation criteria . 12
3.2 Selection of examples . 13
3.3 Evaluation process . 15
3.4 Tool evaluation . 18
3.5 Statistical analysis . 26
3.6 Comparison of the results . 30
3.7 Summary . 31

4 Jlint extensions 33
4.1 How Jlint works . 33
4.2 Goals . 33
4.3 Implementation of extensions . 34
4.4 Code changes . 38
4.5 Problems encountered . 40
4.6 Application of the new Jlint . 44
4.7 Summary . 46

5 Discussion 48
5.1 State of the art . 48
5.2 Capabilities of Jlint . 50
5.3 Usage of static analyzers in software development 50
5.4 Summary . 51

i

ii CONTENTS

6 Future work 52
6.1 Future Jlint extensions . 52
6.2 Design of a compiler-based analyzer 53
6.3 Future directions for formal analysis 56
6.4 Summary . 58

7 Conclusions 59

A Source code analysis 60
A.1 Analysis tools . 60
A.2 Trilogy’s source code . 61
A.3 Built-in Java packages . 66
A.4 Other packages . 68
A.5 Summary . 70

B Existing tools 72
B.1 Dynamic checkers . 72
B.2 The Spin model checker . 74
B.3 Static checkers . 75
B.4 Other tools . 81

C Multi-threading in Java 82
C.1 Threads . 82
C.2 Thread synchronization . 82
C.3 Summary . 84

D Example listings 85
D.1 Selected programs . 85

E Test results 97
E.1 Benchmark . 97
E.2 Program checker results . 98

F Results of new Jlint 115
F.1 Extra Jlint examples . 115
F.2 Trilogy’s source code . 119
F.3 Concurrency package . 123
F.4 ETHZ data warehousing tool . 124

Bibliography 125

Index 128

List of Figures

1.1 Illustrating the scheduling problem. 1
1.2 A simple deadlock example. 2
1.3 Separating model checkers and theorem provers. 4

3.1 Test results for the 15 given examples. 15
3.2 Overall usage of synchronized statements in Trilogy’s code. 28
3.3 Total usage of synchronized statements. 30

4.1 Call graph extension for synchronized blocks. 37
4.2 Call graph extension for Listing F.2. 37
4.3 Constant pool entries for a field. 41
4.4 Call graph extension for synchronized blocks. 44
4.5 Test results for the 15 given examples, including the new Jlint. 45

6.1 The problem of propagating the context. 56

A.1 Breakdown of the usage of synchronized statements. 63
A.2 Statistics of the usage of synchronized statements. 64
A.3 Types of variables used in synchronized blocks. 64
A.4 Overall usage of synchronized statements in Trilogy’s code. 65
A.5 Statistics of the usage of synchronized statements. 66
A.6 Types of variables used in synchronized blocks. 67
A.7 Overall usage of synchronized statements in the Java packages. . . . 67
A.8 Statistics of the usage of synchronized statements. 68
A.9 Overall usage of synchronized statements in javax. 68
A.10 Statistics of the usage of synchronized statements. 69
A.11 Statistics of the usage of synchronized statements. 69
A.12 Overall usage of synchronized statements in the Concurrency package. 69
A.13 Overall usage of synchronized statements in the ETHZ package. . . 70
A.14 Total usage of synchronized statements. 71

C.1 Synchronized(this) vs synchronized methods. 83
C.2 The deadlock in example D.1. 84

E.1 Screenshot of warning for Deadlock example. 99
E.2 Graph for DeadlockWait2 produced by VisualThreads. 103
E.3 Graph for BufferNotify produced by VisualThreads 110
E.4 Alternating thread states in VisualThreads. 113

iii

List of Tables

2.1 Overview of existing tools. 11

3.1 Overview about the tested tools. 16
3.2 Annotations required for code examples. 24
3.3 Overall usage of synchronized statements in Trilogy’s code. 28

4.1 Growth of Jlint code . 38

A.1 Overview about each package. 60
A.2 Overview of Trilogy’s source code. 62
A.3 Per module usage of synchronized(non-this) blocks 65
A.4 Overview of the source code of the built-in Java packages. 66
A.5 Per module usage of synchronized(non-this) blocks 67
A.6 Total usage of synchronized statements. 70

F.1 Analysis of Jlint warnings for MCC Core. 120
F.2 Analysis of Jlint warnings for Cerium. 120
F.3 Analysis of Jlint warnings for the Java backbone. 121
F.4 Analysis of Jlint warnings for trilogyice. 122
F.5 Summary of Jlint’s warnings in Trilogy’s code 122
F.6 Analysis of Jlint warnings for the ETH data warehousing tool. 124

iv

Table of Listings

4.1 Lock variable analysis example. 34
4.2 Code snippet from Jlint: getting the field context. 42
6.1 Extra monitorexit operations inserted by the Java compiler. 55
D.1 Deadlock: run method of two competing threads. 85
D.2 Deadlock2: Locking scheme from Deadlock on a method level. 86
D.3 DeadlockWait: run method of two competing threads. 86
D.4 DeadlockWait2: method foo of classLock B. 87
D.5 Deadlock3: run method of three competing threads. 87
D.6 Race condition: A lock is released in between a calculation. 88
D.7 Jlint example: Loop in lock graph. 88
D.8 ESC/Java example: Pathological case with two locks 90
D.9 Shared bounded buffer (correct version). 91
D.10 Race condition: condition of wait is not checked again. 91
D.11 Condition deadlock: notify instead of notifyAll is used. 92
D.12 Buffer implementation using semaphores. 93
D.13 Semaphore implementation. 93
D.14 Naïve implementation of the Dining Philosophers problem. 94
D.15 Solution 1 for the Dining Philosophers problem. 95
D.16 Solution 2 for the Dining Philosophers problem. 96
F.1 Two faults regarding a wait call. 115
F.2 Deadlock scenario among two methods. 116
F.3 More complicated version of the same deadlock. 117
F.4 Assigning a new value to a lock variable. 118

v

Chapter 1

Introduction

In the last few years, multi-threaded software has become increasingly widespread. Es-
pecially for large servers, multi-threaded programs have advantages over multi-process
programs: Threads are computationally less expensive to create than processes, and
share their address space among each other. Java makes it easy to write multi-threaded
programs; despite this, writing correct multi-threaded software is still very hard.

1.1 Multi-threading problems

Software should be tested thoroughly. Because it is not possible to prove the correct-
ness of a program, one tries to create situations that discover a fault in the software by
choosing a representative set of inputs (test cases). A fault is an incorrect implemen-
tation, due to a human error. A fault can eventually lead to a failure during program
execution [56]. Because finding a fault requires a test case leading to a failure, this
task can be very hard. Usually, test cases are written to model known or anticipated
failures, but of course no test cases exist for unknown ones.

T2

T1

t

Figure 1.1: Illustrating the scheduling problem.

Multi-threaded programming introduces an entirely new set of difficulties. Un-
like in a single-threaded program, the execution of multi-threaded software can be
non-deterministic: the same input may lead to different outputs. This is because the
scheduling of the different threads cannot be influenced by the program. If a part of the
program depends on several threads executing in a certain order, it is not thread-safe:
it cannot be guaranteed that the output of the program is the same, regardless of the
scheduling outcome. Figure 1.1 illustrates this problem: Only one thread can run at a
time. Neither the order in which threads execute, nor the exact size of the time slots

1

2 CHAPTER 1. INTRODUCTION

(the gray boxes) they get is known. This is why there is no scale on the time axis.
Several typical multi-threading problems exist:

Race condition: several threads access the same resource simultaneously.

Deadlock: threads starve each other by holding (and not relinquishing) resources that
the other thread needs to continue.

Livelock: in the resource sharing protocol between the threads, an endless cycle with-
out progress occurs.

When investigating multi-threading problems, the checkers investigate the locking be-
havior of a program. A lock controls access to a shared resource: only a thread holding
the lock is allowed to access that resource. In many implementations, only one thread
is allowed to hold the lock at a time: such a lock is exclusive.

For ensuring the absence of a race condition, a checker examines the lock set L.
This is the set of locks held at a certain time, by each thread when accessing a field. A
checker has to ensure that a field f is 1) only read when a thread holds at least one lock
in L f and 2) only written when a thread holds all locks in L f [36].

A B

C

T1

T2T3

Thread 1

synchronized(A) {
synchronized(B) { }

}

Thread 2

synchronized(B) {
synchronized(C) { }

}

Thread 3

synchronized(C) {
synchronized(A) { }

}

Figure 1.2: A simple deadlock example.

For proving the absence of a deadlock, the common approach is to examine the
lock graph, which shows for each thread the order in which it acquires locks. Figure 1.2
depicts a constellation of three threads competing for three resources (with incomplete
Java source code). If all three threads hold one lock each, none of them can continue
because the second lock they need is already taken. It can be shown that the absence
of a loop on the lock graph guarantees the absence of a deadlock.

Livelocks are more difficult to detect. In particular, the entire information about a
program state can be very large, and multiplied with the number of states, prohibitively
large to store and compare. Therefore, simplifications have to be made for the program
states. As of today, some tools are already capable of assuring a high likelihood for the
absence of a livelock in a program.

The goal of this work was to evaluate existing program checkers for multi-threaded
programs, and decide which one is best applicable to large scale software, such as
Trilogy’s.

1.2. EXISTING CHECKERS 3

The next sections briefly describe the two major approaches and what tools are
available now for checking Java programs. Based on the outcome of the analysis, one
checker was chosen and extended before it was applied to Trilogy’s code base.

1.2 Existing checkers

Until a few years ago, the only way to test a multi-threaded program was to run it long
enough, hoping that eventually enough scheduling combinations would come into play
to uncover most faults. Verifying the properties of a program at run time is also called
dynamic checking.

Recently, an approach successfully employed in hardware verification has been
applied to software: static checking. A static checker does not run the program, but
it analyzes the structure of the program. This thesis has investigated both possibilities
thoroughly. As will be shown, no one is clearly superior to another; instead, the two
approaches are complimentary.

1.2.1 Dynamic checkers

Description

Verifying program properties at run time is the traditional approach. Assertions are eas-
ily monitored at run time; debuggers can help automating the tracking of the program
state. More advanced dynamic checkers monitor any memory accesses of a program,
in order to trap array accesses beyond the bounds of an array and heap accesses outside
the reserved range. Such tools are common development tools today. However, no
dynamic checker can systematically cover all possible inputs, because the input space
is exponential to the length of the input.

The standard tools do not solve multi-threading problems. In particular, they are
still vulnerable to the fact that the program execution is no longer deterministic. Some
novel approaches try to keep track of the program’s history, its previous execution
stages, and deduct information about other possible outcomes (results of different
schedules) from that. In particular, tracking the history of the lock graph has proved to
be a reliable guide in finding multi-threading problems.

Advantages

Dynamic checkers are usually easier to use, because the concepts are established and
well-known. Usually such checkers do not require any extra modeling information;
they only need to know what properties need verification. Moreover, monitoring tools
have access to the entire program state at any point of execution, leaving no sources of
doubt when it comes to the values of each variable.

Problems

Certain faults cannot be detected dynamically unless the thread scheduler exactly re-
produces the scenario that leads to it. This problem is partially alleviated, but not
solved, by keeping track of the history of the state space. Moreover, the classical prob-
lem of finding the right test cases is also far from trivial, and limits the abilities of
dynamic checkers further. Finally, writing test cases is a time consuming and tedious
task, which most developers would gladly avoid.

4 CHAPTER 1. INTRODUCTION

1.2.2 Static checkers

Description

Static checkers have in common that they build a simplified representation of the pro-
gram which they check against given properties. The techniques commonly employed
are model checking and theorem proving. Model checkers operate directly on that
model of the program (such as a call graph or a finite state machine). Such a model
may represent the control flow (flow of execution) or data flow (changes in the vari-
ables) of a program and is commonly expressed in computational tree logic (CTL)
or linear temporal logic (LTL). Theorem provers, however, translate the program into
logic formulas (in first order or second order logic). These formulas are then processed
by a theorem prover. Figure 1.3 shows the distinction between model checking and
theorem proving. It should be noted that the two approaches are often combined, so
the boundaries are blurring.

Static checking (unsound)

Model
checking
(sound)

Theorem
proving
(sound)

Figure 1.3: Separating model checkers and theorem provers.

Originally, one came from a manually written formal specification, where the goal
was to prove the correctness of that specification. Proofing the correctness of non-
trivial programs is impossible in general [57]. Such a proof is almost always incom-
plete: there are always cases where a prover is unable to conclude that an error will
never occur. Therefore, a prover is bound to issue spurious warnings in such cases
[36]. This made that approach very problematic: The specification languages were
difficult to learn and to master, creating in themselves a source of errors; and even a
successful proof could not guarantee the correctness. Moreover, errors could be made
in the implementation of that specification. In the last decade, that approach no longer
made major progress.

A new approach was to create the model automatically from the program, with
little or no human intervention. During this abstraction, information about the program
is lost. A sound checking (also see figure 1.3), which catches all faults, was no longer
feasible. It would constrain static checkers too much [36]. As such, a sound checker
could be written, although at the cost of potentially many spurious warnings.

The applicability of a checker will, in this report, refer to what multi-threading
mechanisms (in the implementation language) and problems the checker can be applied
to. This is a subjective measure, because a checker may not cover certain mechanisms
very well. In particular, a trivial checker that issues a warning for any statement would
be applicable to any kind of problem, without being of any use.

1.3. MULTI-THREADED PROGRAMMING IN JAVA 5

Advantages

Static checkers have the advantage that they work on a more abstract (and thus generic)
level than dynamic checkers. In particular, they are independent on both the input and
the thread schedule, and therefore can verify program properties for all inputs and
schedule outcomes.

Static checking also works well on a unit level, where only one entity of a larger
software package is checked. This allows an application of this method early in the
development cycle, even before a working program exists.

Problems

The key problem is that the actual values of variables are usually not fully known at
compile-time. In particular, the aliasing problem (knowing equalities between two
object references with different names) is very hard to solve, in some cases even im-
possible. The potentially infinite complexity of data structures (such as linked lists)
and possibly never terminating loops are the reason for this.

Quite often, static checkers are simply limited by the amount of context they can
deduce from source or object code, because they have a far more limited capability in
deducing information than the human mind. Therefore, such provers are often aided by
annotations in the source code, which express additional information beyond the given
programming language constructs.

Finally, it is hard to assure that a violation of a modeled property corresponds to
a fault in the software. In particular, finding a counter-example requires tracing all
abstraction steps back to the original software. One possible approach is verify counter-
examples dynamically [34].

1.3 Multi-threaded programming in Java

Java was one of the first widespread programming languages that introduced multi-
threading as a language concept. It has a special class for controlling threads (most
importantly, the Runnable interface and the Thread class) as well as special keywords
and methods for communication between objects (synchronized, wait, notify). Be-
fore multi-threading was part of programming languages, it usually could only be used
via libraries (e.g. p_threads in C or C++).

The key feature in Java, which this thesis is focusing on, are synchronized state-
ments. They always cause the thread to obtain a lock (or wait until the lock is available).
Therefore, the correct and sufficient usage of these synchronization statements is the
key to avoiding deadlocks and race conditions. Also see Appendix C on page 82.

1.4 Comparison of Java program checkers

The previous sections gave an introduction to the problem. The goal of this work
was to find the most practical solution for finding faults in Trilogy’s software. In a
first step, fourteen static and dynamic program checkers were investigated. Some of
these checkers do not work on Java programs, or are not yet finished or publicly avail-
able. Therefore, the selection was narrowed down to five checkers. In a second phase,
each checker was tested on fifteen test examples. These examples represented small,

6 CHAPTER 1. INTRODUCTION

well-known problems and typical errors that can be made when writing multi-threaded
programs.

In order to judge the relevance of the fifteen test cases, a statistical analysis of a
large body of code provided a solid foundation of the frequency of different problems.
In particular, all the Java packages and all core packages of Trilogy were analyzed,
in conjunction with a special concurrency package and a data warehousing algorithm
[23, 24]. The outcome of the example tests, weighed by the frequency of problems,
can be summarized as follows:

MaC [11]: An elegant framework for monitoring programs, but it does not support
multi-threading yet; work is in progress in that area.

Rivet [12]: A special virtual machine that tries all possible thread schedules and there-
fore finds any fault for a given input, although at a prohibitively high overhead.

VisualThreads [14]: By keeping track of the locking history, this program can find
deadlocks even if they do not occur in a particular program schedule. The
checker is specialized on C programs, not Java bytecode.

ESC/Java [3]: The first available theorem prover for Java programs; very powerful,
but still rather limited in the area of multi-threading problems.

Jlint [8]: A simple and very fast model checker that can successfully detect simple
faults. Its original version lacked some important features, though.

1.5 Extension of a Java program checker

Because of the limitations of currently available dynamic checkers for Java, and be-
cause of Jlint’s astounding performance, the decision was made to extend Jlint’s ap-
plicability to those synchronized blocks in Java where no global data flow analysis
was needed. Despite existing limitations in Jlint, the desired extensions could all be
implemented. However, it was seen that a good static checker needs to have a clean
architecture as much as good algorithms. Based on the insights gained while extending
the checker, guidelines for writing a new verifier have been created.

Applying Jlint to Trilogy’s code and other packages still resulted in a very high
number of warnings. Selectively turning certain warnings off made the output man-
ageable. Many warnings were confirmed to be relevant, and while most of them were
false positives, at least 12 of them lead to extra comments or even code changes (“bug
fixes”).

It was seen that certain checks in Jlint still need refinement, in order to reflect cer-
tain common scenarios in multi-threaded programming, such as shared-read variables.
Despite that, even in its current state, the simple checker Jlint can already be of great
use in software development, as a tool to point out potential trouble spots.

1.6 Structure of this report

Chapter 2 describes existing tools in more detail, and why the five selected tools were
chosen for the tests. Chapter 3 gives details of the evaluation of the selected tools,
and the results found. The extensions made for Jlint, and their implementation, are
described in chapter 4. The next chapter discusses the outcomes of the research and

1.6. STRUCTURE OF THIS REPORT 7

experiments made for this report. Possible directions for future work in both the area of
static and dynamic checking are outlined in chapter 6. Chapter 7 concludes this report.

Chapter 2

Existing work

This chapter describes tools that tackle the problem shown in Chapter 1. Some of these
programs are still under development; others are either publicly available or propri-
etary.

Dynamic checkers are listed first, followed by static checkers, in order to facili-
tate a comparison. For each category, there are tools that check a given set of faults,
and those that allow templates of rules or state sequences, which make the tool much
more flexible. In the section about static checkers, Spin is presented first. Spin is a
model checker that operates on its own input language (which is quite similar to a pro-
gramming language). It does not directly solve the problem but serves as a back-end
for many of the tools described thereafter. At the end, a table summarizes the crucial
aspects of these tools, allowing an easy comparison between them. A more detailed
description of each tool can be found in Appendix B on page 72.

2.1 Dynamic checking

MaC (Monitoring and Checking) is a framework that combines low-level monitoring
with high-level requirement specifications. It is being developed at the Uni-
versity of Pennsylvania. So far, MaC can successfully instrument and verify
single-threaded programs, but it has no support for multi-threading yet.

Rivet is a special virtual machine for Java, which systematically tries every thread
schedule that is relevant for an exhaustive examination of the program behavior.
Despite clever optimizations, the run time overhead is still very high, and many
practical problems have forced the Software Design Group at the MIT to give up
on that project.

Verisoft, by Patrice Godefroid from Lucent Technologies, also systematically explores
the state space (including thread interleavings) of a program. By using a new
search algorithm, it can explore the program behavior without storing its state
space. It supports a check against deadlocks, lifelocks, assertion violations, and
other properties. A checker for C programs is available for research; a Java
checker is under construction.

VisualThreads part of the development tools of Compaq’s Tru64 Unix. It monitors
the locking policy of a program and can detect race conditions and deadlocks.

8

2.2. STATIC CHECKING 9

Because the monitoring takes action at the POSIX API level, this tool is rather
ineffective for Java programs; it works well for C and C++ programs.

2.2 Static checking

This section describes static checkers, both model checkers and theorem provers, in
alphabetical order. Spin is presented first because it is often a part of another tool.

Spin is a static model checker and serves as the back-end for other static checkers,
such as Bandera, FeaVer or JPF. It takes system specifications in a special process
meta language (Promela). Gerard J. Holzmann started the development of this
tool in 1980. It is available as Open Source software.

Bandera from the Kansas State University tries to bridge the gap between source code
and an abstract representation of a program. Using annotated source code, Ban-
dera tries to simplify the program by slicing (omitting properties that are not rel-
evant to the analysis) and abstraction (reduction of the state space of variables).
The simplified program is then processed by Spin. Spin’s output is verified by
a counter-example generator, which checks Spin’s result for validity in the real
program.

ESC/Java (Extended Static Checker for Java) from Compaq statically checks a pro-
gram for common errors, such as null references, array bounds errors, or poten-
tial race conditions. It is usually used with annotated source code or bytecode.
Its compiler generates background predicates which are then relayed to a theo-
rem prover. There is no real support yet for counter-examples. The checker is
freely available for research purposes.

FeaVer verifies program properties that are extracted from a special test harness, a
structured test program. Its ultimate goal is to do this fully automatically. Right
now, the user still has to provide some extra information in separate files, and the
tool is restricted to event-driven programs. Even at that stage, it has proved very
useful at Bell Labs, where it is being developed by Gerard J. Holzmann.

Flavers is one of three static checkers developed by the Computer Science department
at the University of Massachusetts Amherst. It combines data and control flow
analysis and allows checking a software implementation against formalized de-
sign requirements. A commercial version (for C++ programs) and a research
version (for Ada programs) exist; a Java checker is under development.

Jlint has been developed by Konstantin Knizhnik at the Moscow State University. By
performing a global control flow and a local data flow analysis, it can verify a lot
of properties in Java bytecode. It is most successful in null pointer and a few
specialized checks, but also allows checks for deadlocks and race conditions.
Jlint is freely available.

JPF (Java PathFinder), developed by NASA, analyzes invariants and deadlocks stati-
cally. The original version worked on Java source code, where supporting certain
language features, such as arrays or floating point numbers, proved rather diffi-
cult. The newer version works on bytecode. JPF uses Spin as its back-end.
NASA currently has no plans to release JPF.

10 CHAPTER 2. EXISTING WORK

LockLint, by Sun Microsystems, detects race conditions and deadlocks in POSIX C
programs. It allows interactive or automated queries. Annotations in C sources
are not required, but recommended. LockLint is commercially available as part
of the Forte development suite.

MC (Meta-level compilation) from Stanford University builds compiler-specific ex-
tensions to check and optimize code. A set of simple rules is used to check large
packages for violations of certain consistency patterns. MC has been success-
fully used for checking the Linux and BSD kernels, but it has not been released
to the public so far.

SLAM is a large project at Microsoft. Its focus is the automatic abstraction of source
code. A new formal model for multi-threaded programs, an extended state ma-
chine, has been developed, which is verified by a model checker for Boolean
programs. The variables in such programs only have three states: true, false, or
unknown. Certain tools should be released to the public in the near future.

2.3 Interface specification

JML/LOOP, by the Iowa State University and the Computer Science Department in
Nijmegen (Holland), allows the specification of module properties. These in-
terface specifications can be checked against implementations, which allows a
safe “design by contract” in libraries [45]. Concurrency extensions are currently
being explored. JML is available under the GPL.

2.4 Summary

This chapter provided an overview about a variety of methods that are currently used
for finding faults in multi-threaded programs. Some of these methods are still very
experimental; others only work on certain programming languages. Many tools are not
available outside the research group or company where it is being developed. Table
2.1, which has been assembled during the analysis of the tools, summarizes this.

For Trilogy, it is of preferable to have a checker that operates on Java programs,
because only a small fraction of their source is not in Java. However, in the first eval-
uation stage, a C/C++ based tool can still provide valuable insights about how other
tools could be improved, or in which direction the development of a new tool should
go.

In each major category, at least one tool is available. From those tools, JML/LOOP
was dropped from the selection, because it does not have any temporal extensions yet,
and the main goal of JML is safe “design by contract”, which is not an important goal
for Trilogy, since all source code of the internal software is available within Trilogy.
LockLint was not chosen because Jlint is very similar while being Open Source and
Java based.

In table 2.1, the remaining selection of available tools is printed in bold. It should
be noted that no static checker that works on high-level templates (such as Flavers, MC,
and to some extent FeaVer) was available for evaluation. If none of the given tools had
worked satisfactorily, this approach would have been considered as an alternative.

2.4.
SU

M
M

A
R

Y
11

Category Tool Detects Static or User-def. Req. Java version Non-Java Availability
[violation of] dynamic? model or source? version

template?
Static Bandera Low-level Static Yes Yes Beta (v0.1) - Since March 8, 2001
checkers properties

ESC/Java Deadlocks, Static No No Released, Modula-3 Binary version
race cond., stable for research
other faults

FeaVer Test cases Static Yes Yes - C: Early 2002?
prototype

Flavers High-level Static Yes Yes Prototype Ada/C++ Ada: available
properties stable upon request?

Jlint Deadlocks, Static No No Stable - Free (GPL)
race cond.
other faults

JPF Assertions Static No Yes - Stable Undecided
LockLint Deadlocks, Static No Yes - C: Stable Part of Sun’s

race cond. Forte for C
MC High-level Static Yes Yes - C/C++ Not available –

properties Usable possibly later
SLAM Assertions Static Probably Yes - C: In deve- Not yet available

Dynamic MaC High-level Dynamic Yes Yes Beta - Binary version
checkers properties (v0.99) for research

Rivet Assertions Dynamic No No Discontinued - available for
research

Verisoft Assertions Dynamic No Yes - C/C++: Binary version
Stable for research

Visual Misc. concur- Dynamic No No Stable C/C++: Part of Alpha
Threads rency errors Stable Unix develop-

ment tools
Interface JML/ Incorrect in- Both Yes Yes - Partial Free (GPL)
specification LOOP terface imple- release.

mentations

Table
2.1:

O
verview

of
existing

tools.

Chapter 3

Evaluation stage

This chapter describes the evaluation of selected program checkers. After consider-
ing their availability and applicability to Java programs (as opposed to Ada or C/C++
programs), only five checkers remained:

1. MaC: a dynamic checker verifying high level properties.

2. Rivet: a systematic thread scheduler for exhaustive testing.

3. VisualThreads: a development tool that keeps track of POSIX thread commands.

4. ESC/Java: a theorem-prover based checker by Compaq.

5. Jlint (old version 1.11): a simple, fast checker performing control flow analysis.

In a first phase, each tool was applied to a small set of test examples. The goal was to
determine the capabilities of the tools. During the second phase, a statistical analysis
of nearly a million lines of code was performed. The aim was to estimate which tools
would be the best for application to large scale software packages.

3.1 Evaluation criteria

For the evaluation, the following questions were relevant:

1. How effective is the approach at finding faults?

� Can a tool give a guarantee for the correctness of a certain property that has
to be verified?

� What kinds of errors are found? Does the checker allow for templates or
model specifications to extend its functionality? Does it focus on multi-
threading problems only or does its scope go beyond that?

� How many actual errors are found, and how many spurious warnings (false
positives) are reported?

� What is the running time of such a tool? Can it be applied to a large code
base, such as Trilogy’s?

2. How practical is a tool to use?

12

3.2. SELECTION OF EXAMPLES 13

� Does a tool allow a template specification that can be applied to many pro-
grams?

� Does it require the source code, or only compiled versions? Does it require
changes (annotations) in the actual source code?

� What knowledge does a tool require (e.g. formal languages, temporal
logic)?

� How big is the annotation overhead in real-world programs? Does it allow
a selective test for certain faults?

� Is it suitable for being used in conjunction with a compiler, or as a stage
prior to regression testing?

Before trying to judge the applicability of each tool to larger programs, it first had to
be tested against well-known test examples. These would also show major differences
between the tools and give directions for the statistical analysis. Running all tools
against the full code base that was finally covered would have required too much time,
since some tools require a major amount of work (for the annotations) or time (for
dynamic testing).

3.2 Selection of examples

3.2.1 Measuring the complexity of examples

Measuring software complexity is a science of its own. Numerous software metrics
exist, each one trying to capture a certain aspect of a program’s size or complexity (or
both). For a comparison of the test examples, the following metrics are suitable:

Metric Explanation

Non-comment lines of code Size of program, influences run time of parser.
McCabe’s cyclomatic number Number of independent paths (and decisions).
Number of threads Heavily influences the size of a model and also the

running time of dynamic checkers.
Number of locks Number of synchronized methods and blocks.

Counting the lines of code is the simplest metric, and depending on the algorithmic
complexity of the code and the coding style, it can be highly ambiguous (especially
for generated code). Nevertheless, on a large scale, it provides a rough measure of the
program size.

McCabe’s metric [52] is one of the oldest metrics in existence. It measures the
number of decisions in a program (i.e. if, while and for statements). It gives a good
measure of the control flow complexity, but only allows comparisons of programs with
a similar data structure complexity [55, pp. 320–21].

There are no established multi-threading metrics yet. Counting the number of
threads and locks yields a result that is highly correlated with the running time of pro-
gram checkers. In particular, Rivet’s performance is doubly exponential in the number
of states and threads a program can have.

Not all tools examine the behavior of each thread (as opposed to the behavior of
any thread), so using the number of threads as a metric is problematic in that context.
The cyclomatic complexity and the number of locks does not seems to influence a static
checker much, if one focuses on multi-threading issues. Moreover, the execution times

14 CHAPTER 3. EVALUATION STAGE

of the different tools varied so much that a comparative benchmarking, based on these
metrics, did not make much sense. See Appendix E.1 for more information. For Jlint,
the execution times were always so short that they were not an issue (in general, if the
files were already cached and the output was redirected to a file, Jlint requires less than
one second even for large packages).

The examples described in this chapter were not chosen based on their values with
certain metrics, but to exhibit specific problems in multi-threaded programming. The
first few examples all show certain faults; the last ones (shared buffer and Dining
Philosophers) show several (correct or flawed) implementations of a more complex
algorithm. These examples should provide a much better test of the capabilities of
each checker.

3.2.2 Selecting examples

When selecting examples, it was important to keep them small and relatively simple.
Besides being easier to understand and more instructive, they are also easier to verify
manually. After all, the correctness of the checkers should not be misjudged by flawed
implementations that are considered correct.

Moreover, the examples should be simple enough such that all checkers can be
applied to them; this would probably not have been the case for examples that require
external modules (such as data base wrappers) to work. Nevertheless, the locking
schemes and faults displayed by the examples should reflect properties of larger, real
life programs. A description of these example programs can be found in Appendix
D on page 85. The deadlock examples and the bounded buffer implementations have
been taken from the Rivet test suite [29] or are modifications of these examples. Two
implementations of the “Dining Philosophers” have been taken from [22], while the
“host” variant has been described in [46].

Because it is very hard, even for someone who has been working with large amounts
of code, to judge the applicability of such examples objectively, large software pack-
ages were analyzed in order to check the relevance of these examples. Most of the an-
alyzed packages were taken from Trilogy’s software or the core Java packages which
are part of Sun’s JRE 1.3. A data warehousing tool and a concurrency framework were
analyzed as well ([23, 24]).

3.2.3 Overview of examples

A detailed listing of all 15 examples can be found in Appendix D. Three major cate-
gories of examples were used:

1. Six simple deadlocks using incorrect locking orders, or exhibiting problems with
wait and notify: The first five examples (D.1 to D.5) belong into this category.
The Jlint example (D.7) can also be counted towards it; it differs slightly from the
rest because it exhibits a deadlock between method calls across different classes.

2. A subtle race condition due to incomplete locking, as shown in SplitSync (ex-
ample D.6).

3. Eight complex locking schemes, such as the ones in the shared buffer and Din-
ing Philosophers problems. The ESC/Java example can also be counted towards
this category. The nesting of the locks is given by a nested data structure, and
therefore cannot be fully evaluated at compile-time.

3.3. EVALUATION PROCESS 15

Five of these programs are correct, while the three others (D.10, D.11 and D.14)
exhibit potential race conditions or deadlocks.

3.3 Evaluation process

3.3.1 Overview

A direct comparison between programs that are so different is very hard, even though
all programs ultimately try to achieve the same goal. Static checkers cannot detect
faults that only occur if certain references change at run time. Conventional dynamic
checkers commonly only work within the given schedule for the threads, i.e. other
interleavings of threads might lead to failures that go undetected. Moreover, dynamic
checkers have the disadvantage that they require a running version of the program and
therefore cannot be applied to incomplete programs; because of this, examples D.7 and
D.8 had to be omitted from testing for dynamic checkers.

5

15

10

Threads
Visual

0

Rivet ESC/Java Jlint

Correct output

Tool did not run/inconclusive output

Beyond scope of tool

False or missing warnings

Figure 3.1: Test results for the 15 given examples.

Figure 3.1 shows an overview. The categories have the following meaning:

Tool did not run/inconclusive output: ESC/Java’s theorem prover “Simplify” exited
“unexpectedly” in example D.3, therefore it could not be evaluated. Rivet does
not run anymore under modern Java Run Time Environments; the numbers for it
had to be taken from [29], and no new examples could be tested with it. While
VisualThreads ran on all examples, its output was sometimes not clear, or several
test runs yielded different results.

False or missing warnings: If a tool produced “critical” warnings for a correct pro-
gram, the output fell under this category. A “critical” warning was one that does
not refer to design guidelines or properties of the program that are not related to
the multi-threading problems investigated here (e.g. array bound checks).

16 CHAPTER 3. EVALUATION STAGE

An output without any such warnings for a faulty program was also counted
under this category.

Beyond scope of tool: Dynamic checkers cannot be run on examples D.7 and D.8,
since these are not full programs. Therefore, they were counted as “beyond the
scope” of those tools.
Today’s static checkers cannot yet handle more sophisticated locking structures,
such as a (bounded) circular list or buffer, implemented as an array. Such a situ-
ation was present in the four version of the “shared buffer” and the three “Dining
Philosophers” implementations (examples D.9 – D.16).
Jlint has no way of dealing with such a situation. After some experiments with
modeling (ghost) variables in ESC/Java, it became apparent that the limitations
of the scope of the different annotation statements presented a major difficulty
in expressing more elaborate modeling conditions. Even if the annotations could
have been carried out successfully (with an effort that would not be realistic un-
der time constraints usually present in industrial projects), it is unclear whether
the version of ESC/Java used would have been capable of verifying these algo-
rithms.

Correct output: The checker issued a correct warning for a faulty program, and no
warnings for correct implementations. It should be noted that in example D.8,
Jlint passed because it was entirely ignoring the critical part of the program.

The simple numbers of correctly detected faults are misleading, even more so because
certain problems are over-represented in order to investigate the behavior of the pro-
grams more closely. Nevertheless, it was attempted to test each program with as many
of the example sources as possible.

MaC currently does not allow checking of typical multi-threading errors at all.
Therefore the tests were canceled once the limitations in the current version were ob-
vious. Future extensions may allow MaC to check for deadlocks, race conditions and
liveness properties.

Table 3.1 shows what types of faults can be detected by each tool. Again, MaC was
not included because the required extensions are not yet written.

In
ter

-m
eth

od

de
ad

loc
ks

In
tra

-m
eth

od

de
ad

loc
ks

Rac
e
co

nd
iti

on
s

wa
it
/n
ot
if
y

de
ad

loc
ks

Live
ne

ss

pr
op

ert
ies

Rivet Yes Yes Yes (using assertions) Yes No
Visual Threads Yes Yes Special cases Yes Yes
ESC/Java Yes Yes Yes No No
Jlint Yes No Special cases Yes No

Table 3.1: Overview about the tested tools. Results from Rivet are taken from [29] and
could not be verified since Rivet does not run under newer JVMs. MaC could not be
applied to the given examples.

Inter-method deadlocks: Potential deadlocks caused by a problematic dependency of
synchronized methods of different classes.

3.3. EVALUATION PROCESS 17

Intra-method deadlocks Deadlocks caused by an incorrect nesting of synchronized
blocks.

Race conditions: Concurrent access to a shared resource. Jlint’s capabilities are lim-
ited to direct field accesses, which is not good coding practice; it cannot detect
race conditions via get methods. VisualThreads only detects race conditions
when they actually occur at run time; incomplete locking schemes as such are
not detected.

wait/notify deadlocks: If a thread holds several locks when waiting for a lock,
it will only relinquish the lock it is waiting on. The inavailability of the other
locks can lead to a deadlock.

Liveness properties: A guarantee that a program makes progress in its state space and
is able to perform a certain service consistently. VisualThreads cannot guarantee
this, but show livelocks (the absence of progress) with a high probability.

3.3.2 Program installation

Installation was fairly simple for all programs, with the exception of Rivet:

� The original Jlint comes as one (130 KB large) C++ file and a makefile for com-
piling it. The new version consists of several files.

� ESC/Java comes as an archive with binaries, examples and a shell script that
needs to be customized (after setting some environment variables in the shell).

� MaC comes as an archive of Java .class files and needs to be added to the
CLASSPATH.

� VisualThreads, being a commercial product, comes as an Alpha Unix package,
where installation is automatic.

Rivet, on the other hand, is tightly tied to the virtual machine it uses. The main reason,
according to Derek Bruening, is that “Rivet does all kinds of things that a later version
of Java’s security checker might complain about. It makes shadow versions of every
class, classes with the exact same name but through a different class loader, and I’m
not sure if the more recent versions of Java have closed that name space loophole.”
Also, a lot of other problems regarding the extension of native methods, minor incom-
patibilities between the bytecode files generated by different compilers and continuous
changes in the Java Run Time Environment (JRE) broke Rivet each time a new version
came out.

In this work, various combinations of the following Java compilers and JREs were
used: Sun’s JDK and JRE version 1.3.0, Blackdown JDK/JRE versions 1.3.0, 1.2.2
and 1.1.8; and jikes/kaffe. Sun’s older JREs and Blackdown’s version 1.1.8 would
not run anymore under RedHat GNU/Linux 7.0, which was used as the development
environment. Therefore, an older version of Linux had to be set up using VMWare in
order to run both environments concurrently on the same computer. Since it became
obvious that the newer class loader in version 1.2 would not cooperate with Rivet,
version 1.1.8 was used; at that time, Sun had not even ported their JRE to Linux, so
only Blackdown’s version was available.

18 CHAPTER 3. EVALUATION STAGE

However, Rivet did not work under any of these configurations; indeed, the latest
version for which it is known to work is 1.1.5, which is older than the currently sup-
ported versions at Trilogy. Therefore, Rivet would have to be ported to a newer JDK in
order to become useful. Making Rivet work with version 1.2 or newer would require
modifications of the Java class loader itself, because overloading built-in classes is no
longer allowed there (although this restriction was not fully implemented yet in older
versions and could be circumvented by setting the CLASSPATH appropriately).

3.3.3 Common traits

None of the tools can guarantee the absence of a certain kind of fault. The static check-
ers cannot detect whether the program is simple enough to allow a sound checking.
Only some specialized checks allow an exhaustive verification; indicating the guaran-
teed correctness of certain aspects of the program could be a great help. For those
checks where this is normally not the case, adding such a feature would not be very
useful. Dynamic checkers, by definition, need a certain input to perform their checks
on. Even then, VisualThreads was not successful at detecting a deadlock in all cases.
Rivet is the only program that has the potential to detect a fault for sure, because it runs
all possible thread schedules in sequence. Even then, the test is only representative for
one test case.

Both static checkers could not deal with the complexity involved in the shared
buffer and Dining Philosophers examples. While they could give some warnings about
potential trouble spots, a full check lies outside the scope of a static checker. Possibly
a preprocessor that generates one class for each instance of a Philosopher class, with
the index of each instance given, could alleviate the problem in that case. However,
such work is specific to this problem, and would not help in “real world” examples
where the number of threads is either not strictly bounded or not even constant during
program execution.

3.3.4 Testing procedure

Only ESC/Java and MaC required annotations or script specifications, respectively.
Therefore, the tests for ESC/Java were usually run many times, until a suitable set
of annotations was found. For MaC, some first experiments were done with different
scripts, until it was found that currently MaC does not allow checking for liveness
properties or deadlocks. Testing MaC was canceled at that stage.

3.4 Tool evaluation

Despite MaC’s lack of multi-threading capabilities, this evaluation includes MaC. Rivet
is also included, although it requires to be ported to the latest Java Run Time Environ-
ment before it can be used for today’s Java programs.

For each tool, an overview is given first, followed by a brief summary of its fault-
detection capabilities. Its strengths and performance are evaluated, together with the
perceived difficulty of learning how to master the tool. While the latter is a very sub-
jective measure, it is yet crucial for the success in an industrial application. Finally,
after reviewing the limitations of each tool, a summary is given.

3.4. TOOL EVALUATION 19

3.4.1 MaC

Overview

MaC is a dynamic checker that has two main components: a run time checker and
an event recognizer. The latter communicates with a Java program that has been in-
strumented (extended) with special instructions that are triggered whenever certain op-
erations occur. The run time checker then verifies whether these events violate the
requirements of the program.

Even though there is no direct support for multi-threading issues yet, the goal was
to express deadlock problems as liveness properties: by specifying that no thread is
allowed to hold a lock for a “long time” (e.g. 5 seconds for simple programs), one
could catch deadlocks when they occur.

Required knowledge and effort

MaC comes with a short manual giving a good overview about the different compo-
nents of the tool. A second document introduces the definitions of the two annotations
languages:

1. The “Primitive Event Definition Language” (PEDL) defines which Java variables
and methods are monitored, and how these variables are connected to conditions
that occur in the properties that will be monitored.

2. The “Meta Event Definition Language” (MEDL) describes the relation between
events and conditions, how events are connected to each other and what se-
quences of events are allowed (properties of the program).

Both languages are quite simple and intuitive, yet powerful enough for most purposes.
However, the current description lacks a good reference, so it is sometimes not easy to
figure out the exact meaning of certain keywords.

Performance

According to Moonjoo Kim, who is currently working on MaC, “in the worst case of
monitoring i of for(int i=0; i<max; i++), [the] overhead is 100 times without
considering property evaluation. Most of the overhead on this case comes from TCP
socket communication overhead.” However, this issue is currently being addressed,
and an API is being written which allows the processes to communicate via pipes (if
running all components on the same computer).

Limitations

The run time checker of MaC is synchronous; i.e. it is triggered whenever the event
recognizer is called by the Java program. This makes it impossible to check for dead-
lock, because the event recognizer would wait forever on events in that case! Also,
MaC does not yet have a way to obtain the current time, even though an event count
can be obtained.

However, MaC would only require a minor extension and the absence of “stalling”
(where not a single thread is active anymore and no events occur) in order to detect
deadlocks. This could be simulated by having a dummy thread running that generates
an event from time to time. Also, MaC would have to be augmented with the notion of

20 CHAPTER 3. EVALUATION STAGE

(system) time for such checks. Race conditions are not directly supported, but changes
in sources would still allow checks with the current version of MaC.

Because MaC is still work in progress, and the source code was not available,
testing was not continued at that stage.

Summary

The simplicity of the annotation language and the wide area of applications (any kind
of safety property or constraint can be checked) is very appealing. While MaC does
currently not have any features that would allow it to tackle problems specific to multi-
threading, extensions will be written for it within the year 2001.

3.4.2 Rivet

Overview

At the cost of a high overhead, Rivet performs an exhaustive checking by testing the
program with all possible thread schedules. Unfortunately, Rivet requires a very old
Java environment to work at all, because it has to circumvent numerous security fea-
tures in order to work.

Detected faults

Because many examples were chosen from or based on the thesis about Rivet [29],
Rivet would have successfully detected most faults if run on these programs. The two
examples which were not yet a running program (Listings D.7 and D.8) could not have
been tested.

In sheer numbers, Rivet would have been the most successful checker, although
also the slowest one. Its exhaustive checking finds any problem that is not restricted
to certain test cases. However, Rivet did not run on JDK 1.1.8 or newer and therefore
could not be tested.

Performance

As documented in [29], the run time overhead would be at a factor of roughly 180 –
200. This makes it impossible to run Rivet on larger programs.

Summary

Rivet has quite a potential, but still needs a lot of work on it. It is doubtful whether any-
one will port it to a current JDK, which would likely require modifications in the class
loader. Even then, there are still many problems that have not been solved yet. How-
ever, Rivet incorporates many novel ideas, such as a virtual machine that can backtrack
a step, and a systematic thread scheduler; therefore, it would be a pity if that work just
died.

3.4.3 VisualThreads test results

Overview

VisualThreads is a dynamic checker that catches deadlocks, race conditions and poten-
tially hazardous locking schemes. When starting this tool, a GUI appears that allows

3.4. TOOL EVALUATION 21

the programmer to enter the program name and all parameters; when running the pro-
gram, the GUI continously informs the programmer about its status with a graph about
the number of threads and events, and dialog boxes about violations (such as dead-
locks). VisualThreads operates on the level of POSIX threads, which is probably not
the best approach to monitor Java programs. Its focus lies on C and C++ programs.

Detected faults

VisualThreads seemed to be unable to detect circular locking schemes in Java, even
though an example program written in C shows that it has this capability. Possibly the
addresses of the object locks change at run time in the Java Virtual Machine. Once a
deadlock actually occurs, though, it is always detected by VisualThreads.

Quite a few of the examples have been extended with sleep calls that stop a thread
for a random period of time; without these calls, the faults would not show up at run
time and go undetected by VisualThreads. Since it is normally not the case that a
programmer inserts random sleep calls at critical sections, the actual usefulness of
VisualThreads could be quite a bit lower than the numbers suggest. However, because
of the large slowdown introduced by VisualThreads, Java’s thread scheduling acts quite
differently from its normal behavior, so it may still detect a number of faults that would
not occur during normal execution.

Strengths

The graphical output allows easy monitoring of the program: It is easy to see when
a program is stalled and does not change its state anymore. VisualThreads does not
automatically abort the program, though, so it is not suitable for automated testing
(especially since it still fully utilizes the CPU when it is monitoring an idle program).

VisualThreads can be used without prior knowledge of problems that can occur in
multi-threaded programs; each detected violation is displayed with detailed explana-
tions. It is also very easy to use, due to its graphical user interface.

Its main potential lies in detecting possible deadlocks by observing the order in
which locks are taken. This feature seems not to work in Java.

Performance

Because VisualThreads was running on a rather old, slow Alpha computer, it is hard
to judge its performance. Indeed, a lot of the given overhead may have been caused
by the GUI rather than the core program. A rough guess is that it slows down a Java
program by at least factor 20.

Limitations

Because VisualThreads only runs together with its graphical user interface, it is not
suited to automatic or overnight testing. Also, it needs a fast machine to run on; the
fact that it only runs on Alpha Unix makes it harder to get access to such a machine.
The generated trace files grow very fast (at a rate of several megabytes per minute),
which further slows down the execution.

22 CHAPTER 3. EVALUATION STAGE

Summary

Being a commercial product, VisualThreads is the most powerful run time checker
available. It requires a well-equipped computer to run on, but can be used on any
executable program.

3.4.4 ESC/Java test results

Overview

ESC/Java works mainly on (preferably annotated) source files. If the source code is
not available, a specification file can be given (which includes all method declarations
and annotations about the behavior of the methods). Alternatively, ESC/Java can also
process class files directly, although with much less useful results.

Detected faults

ESC/Java is by no means a sound checker (in the sense that it detects all faults), nor
is its goal to be complete (in the sense that it never gives spurious warnings). [36,
Appendix C] explains why:

“An unsoundness is a circumstance that causes ESC/Java to miss an
error that is actually present in the program it is analyzing. Because
ESC/Java is an extended static checker rather than a program verifier, some
unsoundnesses are incorporated into the checker by design, based on inten-
tional trade-offs of unsoundness with other properties of the checker, such
as frequency of false alarms (incompleteness), efficiency, etc. Continuing
experience, and new ideas, may lead to re-evaluation of these trade-offs,
with some sources of unsoundness possibly being eliminated and others
possibly being added in future versions of ESC/Java.”

One point that is maybe not quite clear in this quotation is the fact that for certain
properties, sound checks may be possible, but would require large extensions of the
given checker. These “intentional” trade-offs are usually due to the fact that this (large)
project is still far from being finished, and a compromise had been made to produce a
working program checker on time.

The focus of ESC/Java is to verify the validity of assertions statically. Therefore, it
requires annotations in the code in order to be really useful (although certain properties
are checked by default). Many annotations are some form of assumption where the user
supplies additional information to the program, which would otherwise not be available
at compile-time. The checks for race conditions and deadlocks are specific extensions
of these two primitives and have not originally been the goal of ESC/Java. However,
there is work in progress that will make checking for synchronization problems easier.

In the examples, the DeadlockWait2 example (Listing D.4) was not counted be-
cause ESC/Java’s theorem prover “Simplify” crashed during execution under Linux.
This failure could not be reproduced under Solaris by Compaq’s development team,
and it can be assumed that it will be fixed for the next Linux version. Also, the Jlint
test example gave an output that was hard to interpret; with the improved support for
synchronized methods in the next version, it should be clearer.

The Dining Philosophers problem (Listing D.14) could have been made more tractable
for ESC/Java by fixing the number of processes, possibly also by preprocessing the

3.4. TOOL EVALUATION 23

code (see Section 3.3.3). However, the amount of annotations necessary in that case
(and also for the shared buffer problem) would have been really large, coming close
to a formal proof. This is outside the usage that can be expected in industrial appli-
cation programming, where a tight schedule will not allow for the time needed for
constructing model variables that reflect properties of the program which hold during
the execution of all threads. Once someone gets that far, the main work of verifica-
tion is done by a human rather than the computer. When using ESC/Java, it is more
beneficial to focus on the faults that occur under simpler circumstances.

Strengths

ESC/Java finds indeed all of the simpler faults and only really fails in two cases: First
in the example given in the ESC/Java manual (Listing D.8), where a temporary change
in the data structure cannot be reproduced by data flow analysis; second in the Split-
Sync example (Listing D.6), where it reports a potential deadlock rather than a race
condition. In the two more complex cases (shared buffer and Dining Philosophers), it
hints at trouble spots in the code, regardless of whether the given example works cor-
rectly or not. Even though this may look like a failure, one has to keep in mind that a
user can turn a warning off for a given position in the code, making it easy to eliminate
spurious warnings once they have been examined.

Required knowledge and effort

ESC/Java is a very powerful tool, encompassing warnings in 21 categories, 24 annota-
tion pragmas, and 18 specification expressions which are needed for some annotations.
Its rich syntax is similar to a small programming language of its own, but on a more
abstract level. Therefore fully mastering the annotation language requires a thorough
understanding of Java, especially if model variables and lock set annotations are to
be used. If one focuses on simpler checks, one can start with fewer, more intuitive
pragmas, such as assert. Future versions of ESC/Java will hide some of the inter-
nal complexity when dealing with synchronized blocks, making its usage simpler.
The programmer also needs to have a basic understanding of preconditions, postcon-
ditions and invariants. Unfortunately, the manual tries to be both an introduction and a
reference; it does quite well at achieving the latter, but on the cost of the former.

The number of annotations required has to be taken with a grain of salt, because the
annotations were geared towards checking for deadlocks and race conditions; certain
warnings, such as potentially incorrect array accesses, were ignored. In the current
version, the annotation overhead was acceptable, even though one sometimes has to
invest some time into finding the right set of annotations to use if complex relationships
between objects should be expressed. For simple cases, the annotations are trivial,
usually only for ensuring that references are not null.

Performance

ESC/Java is definitely slower than a compiler, since it has to repeat most of the com-
piler’s task and run its theorem prover on top of it. The overhead is not too large,
though; in most cases, ESC/Java should be suitable for running before checking in
source code, and it is definitely useful as a verification stage prior to testing, given
the code is sufficiently annotated. However, the output is not meant to be processed
automatically (unlike test cases).

24 CHAPTER 3. EVALUATION STAGE

Program Size Lines of anno- LOA/
(NCLOC) tations (LOA) NCLOC

Deadlock 50 2 4.00%
Deadlock2 50 8 16.00%
Deadlock3 48 3 6.25%
Deadlock-Wait 43 3 6.98%
Deadlock-Wait2 65 6 9.23%
SplitSync 26 2 7.69%
Jlint 26 9 34.62%
ESC/Java 77 14 18.18%
Buffer 66 8 12.12%
BufferSem 90 18 20.00%
Philosopher 93 11 11.83%
PhilosopherHost 116 16 13.79%
Total 750 100 13.33%

Table 3.2: Annotations required for code examples. Annotations are sometimes in-
complete (certain checks were disabled). Annotations for the Semaphore class were
counted towards all programs using semaphores. The given numbers reflect the true
annotations after a small extension to ESC/Java will be added, which will allow for
more concise annotations.

Limitations

A major problem when working with ESC/Java is that it is very likely to generate warn-
ings for any synchronized statement. Only with extra annotations, one can remove
these warnings. Sometimes, finding the right annotation can be very hard. For an in-
correct annotation, ESC/Java will complain about a violated invariant. At that point, it
is not clear whether the annotation was incorrect or merely insufficient for ESC/Java’s
theorem prover, or whether there is a genuine fault in the program. This is precisely the
question that the prover should answer, but for complicated programs, it cannot always
help.

ESC/Java’s warnings are usually very concise – more often than not, a bit too con-
cise. Sometimes, some extra information or a small counter-example would be very
helpful. Right now, counter-examples are only given in an internal format, which cor-
responds to an intermediate language which is used when translating the Java program
into a proof. These counter-examples are very hard to read, and it is not possible to
understand them fully without thorough knowledge about ESC/Java internals. This is
certainly an area that needs improvement. One has to keep in mind that generating ex-
amples in the real programming language, based on properties disproved by a formal
checker (in a highly abstract representation) is a very hard problem. Bandera and the
SLAM tools ([2, 6]) are supposed to solve it.

Summary

ESC/Java is definitely the most powerful static checker currently available. While its
key strengths are not in the area of synchronization problems, there are already a couple
of features that allow very useful checking. Work is in progress to make checking for
deadlocks easier and more powerful.

3.4. TOOL EVALUATION 25

ESC/Java requires some time to be mastered; it remains to be seen whether the
effort is worthwhile, given the current stage of implementation.

3.4.5 Jlint test results (version 1.11)

Overview

Jlint works directly on the compiled classes and therefore does not require the source
code. However, it does not allow for annotations and templates either, restricting any
checks to the ones which are “hard-wired” into the source code. On the other hand, this
makes it extremely easy to use; very little prior knowledge is needed to run the tool and
interpret its output.

Detected faults

Jlint only performs control flow and very limited data flow analysis. Therefore, it
can only detect deadlocks that occur on a method level, i.e. where the synchronized
statement applies to the entire method and obtains a lock on the current instance (this).
Synchronization problems within methods, where synchronized(resource) applies
to a block of code, are ignored.

In general, checking these locks is very hard, due to the aliasing problem. Because
a reference can be copied or changed during run time, the content of a certain variable
cannot always be determined statically. Konstantin Knizhnik, the author of Jlint, says:

“The problem with analyzing synchronized(lock) { block } con-
structions is that "lock" can be arbitrary expression, and it is impossible to
detect without execution of [the] program whether two such expressions
refer to the same object. Even the simplest case, when lock is just the name
of variable, require full data flow analysis to be able to make conclusion
which object is locked.”

However, if a variable is shared between threads (either as a singleton instance or a
static variable) and does not change during the execution, a check can still be done,
without (complicated) data flow analysis. For testing this, the two basic deadlock pro-
grams (Listings D.1 and D.3) were transformed into programs that exhibit the same
locking problem, but between methods rather than within the same method. Jlint suc-
cessfully detected these deadlocks and gave a very useful and concise description.

Strengths

Jlint’s is most useful at checking synchronization problems, where it supports dead-
locks on a method level, and certain race condition checks. It also performs a number
of other checks using a simple data flow analysis, such as the check for possible null
references. These faults are easier to find than synchronization problems. Jlint also
has some specialized checks which are very reliable, but apply to uncommon types of
faults.

Performance

Jlint’s biggest strength is its extremely fast performance (since it has been written in
C++), which makes it even faster than the current Java compilers (which have to ana-

26 CHAPTER 3. EVALUATION STAGE

lyze the entire source while a class file is much simpler). This makes it very easy to
run Jlint often, once the source files compile.

Required knowledge and effort

As it has been mentioned above, Jlint requires very little prior knowledge. It is recom-
mended to read the manual, which is not too long and still encompasses all of Jlint’s
functionality, before using the tool. No knowledge other than a good understanding of
Java is required, as Jlint does not allow any annotations.

Limitations

Jlint’s original scope for synchronizations was very limited, because it only worked on
a method level. An extension for the remaining Deadlock examples was shown to be
possible with a reasonable effort. In order to verify whether the assumptions needed
for doing these checks are valid in real code, an analysis of Trilogy’s code followed
(see Section 3.5).

Summary

Jlint’s simplicity and speed make it worth using on code of any size. However, it
does not allow any customization, so repeated usage for gradual refinement is a less
likely scenario. Jlint fails to detect many faults, but is generally conservative at issuing
warnings, which makes it quite useful.

3.5 Statistical analysis

Knowing now the capabilities of these five tools, it still was unclear which one would
be best suited to a real world scenario. How often do synchronized blocks, a feature
that Jlint does not support, occur? In synchronized blocks, what resource is usually
synchronized on? Are complex locking schemes (such as lists of locks) common?

An analysis of Trilogy’s code and other code bases sheds light into this problem.
With an increasingly fine level of detail, several aspects of concurrent programming in
Java were analyzed. First, the scope of the analysis will be shown, then the results.

3.5.1 Scope

The analysis consisted of three steps:

1. Getting a count of synchronized methods and blocks. Their number gives a
measure of “parallelism” of a Java package. However, the relative numbers were
far more interesting, as they give an indication of what Java checkers should be
capable of in order to cover most cases occurring in real software.

2. The different cases of synchronized blocks:

(a) synchronized([this.]getClass(): this is a synchronization on the cur-
rent class. In most cases, the synchronized block could be substituted by
a call to a static synchronized (class) method.1

1If instance (non-static) fields are used within the synchronized block, a direct substitution is not
possible.

3.5. STATISTICAL ANALYSIS 27

(b) synchronized(this): a synchronization on the current instance. The
synchronized block can be substituted with a call to a synchronized
method. Synchronizing on an instance is far more common than synchro-
nizing on all instances of a class (as in case 2a).

(c) Other cases. In that case, an arbitrary object is synchronized on (usually a
field of the current class).

3. In case 2c, what kind of variable is synchronized on? There are quite a few
possible cases:

(a) Members of the current class:
� Class (static) variables. This is usually the case when a resource is

shared between different instances and may only be accessed by one
instance at a time. The static reference is usually still points to an in-
stance, not a class – therefore the distinction between synchronizations
on a class (case 2a) and on a class variable (this case).

� Instance variables. Often, this case corresponds a singleton instance
[51] which holds a shared resource.

� Inherited fields. Depending on whether they are static or not, they
correspond to one of the two cases above. However, they are more
difficult to analyze (and also more difficult to keep track of for a pro-
grammer).

(b) Members of another class: a direct field access to another object usually
corresponds to unsafe design, but is sometimes used for a performance
advantage.

(c) Function parameters and local variables: in this case, the reference to the
object that is locked on is obtained dynamically, and requires a data flow
analysis across methods, often across methods of different classes.

Case 3a usually corresponds to a shared resource that is initialized once during instance
(or class) creation and then used throughout the lifetime of an instance. Possibly, that
resource may be re-allocated under special circumstances. Because these references
generally do not change, their analysis is relatively simple. Therefore, Jlint could be
easily extended to encompass such cases. The question was now how common such a
case is.

In the other cases, interactions between classes need be analyzed. This requires a
global data flow analysis, which beyond the scope of currently available checkers.

3.5.2 Analysis method

Cases 1 to 3a could be covered by a shell script, while a closer analysis of synchronized
blocks was done by a Perl script implementing a small Java parser. See appendix A.1
on page 60 for a description of these programs.

3.5.3 Analysis results

A listing of all the information gathered during the analysis can be found in appendixes
A.2 to A.4. This section summarizes these results.

28 CHAPTER 3. EVALUATION STAGE

Trilogy’s source code

Synchronized methods make up about the majority of the occurrences of synchronized
statements (see table 3.3 and figure 3.2). The synchronizations on this or the cur-
rent class make up a small amount. 35% are case 2c, where an “arbitrary” variable
is synchronized on. This shows that the simpler cases already cover two thirds of all
synchronization issues.

487 Total 100.00%
265 synchronized methods 54.41%

51 on this 10.47%
93 on a class or instance var. 19.10%
30 on a class (on r.getClass()) 6.16%
48 Other cases 9.86%

Table 3.3: Overall usage of synchronized statements in Trilogy’s code.

Out of these harder cases, the majority is a single shared resource that is used
among several instances (using a static variable) or threads using the same class.
The combined “simpler” cases (synchronizations on this, class or instance variables,
or classes) make up the major part of all synchronization statements (about 85%). Also,
this is a substantial increase compared to the synchronized methods only. It should be
noted that the kind of complexity encountered varies a lot between different packages.
For example, the core classes, which administrate many shared resources, contain many
synchronizations on such resources. Other packages, especially wrappers, frequently
obtain a reference to such a shared resources through interaction with different classes.
What do other packages look like? Are they similar to Trilogy’s?

265

synchronized method

51

on this 93

on a class/instance var.

30

on a class

48
other cases

Figure 3.2: Overall usage of synchronized statements in Trilogy’s code. A distinction
is made between synchronized methods, synchronizations on object fields (which are
references to an object instance), on classes and other cases.

Built-in Java packages

While the big picture is similar, there are huge discrepancies among the different pack-
ages. Especially noteworthy is the high number of local variables (due to interaction

3.5. STATISTICAL ANALYSIS 29

between objects for managing shared resources) in the awt package. The more com-
plex cases are significantly more frequent than in Trilogy’s code (17.59% as opposed
to 9.86 %). This is not surprising, since these packages have to implement the core
Java functionality, and it is desirable that much of the complexity of multi-threaded
programming is taken away by well-designed, thread-safe core classes.

Other packages

Swing

Some javax.* packages (accessibility, naming, swing) are now included in the
Java Run Time Environment, version 1.3 and newer. Except for the Swing GUI toolkit,
almost no synchronization statements are used at all. These packages are mostly
single-threaded, but thread-safe. Hence most synchronization operations are guards
against concurrent usage. The high number (74.77%) of synchronized methods and
synchronized this blocks shows this. Also, the total number of synchronized key-
words in the code is lower than in any other package analyzed. One can conclude that
in packages that deal less often with concurrency issues, the synchronizations on the
this instance via synchronized blocks or methods are by far the most often used
ones, since they usually only serve to guarantee an “atomic” operation within a block
or method.2

OMG (CORBA) packages The omg.* packages that come with the JRE 1.3 im-
plement the CORBA functionality for Java. Since the real multi-threading issues are
in the underlying natively implemented framework, which has to be able to deal with
many requests at a time, the Java packages only include synchronizations on the current
instance or class, and no other locking schemes.

Concurrency package Since this package implements higher, concurrent “building
blocks”, such as shared read locks, it is inherently the most complex one with respect
to parallelism. Nevertheless, the number of locks on the current instance makes up
51.41% of all locks. Even in such a complex package, the “atomic block or method”
type of synchronization is the most common one. Of the rest, the overwhelming ma-
jority (43.13 % of the total) were synchronizations on a class or instance variables (in
195 out of 229 cases, fields that were inherited; in 31 cases, non-static fields). Usu-
ally, these variables were part of a more complex data structure (e.g. a node in a list
or queue), and therefore were sometimes quite hard to analyze (also see Section F.3 on
page 123).

ETH Data warehousing tool This tool, having not many lines of code, was the sec-
ond most complex package analyzed (unless some Java packages such as java.beans.*
or java.io.* are considered separately). However, 83.08% of all cases were synchronized
methods, and the rest were synchronizations on a class or instance variables. This pack-
age should be easier to handle for a static checker because there are no interactions
between classes when a lock has to be obtained.

2Strictly speaking, the operation is only atomic with respect to the this instance.

30 CHAPTER 3. EVALUATION STAGE

3.5.4 Common traits

As one can see, there seems to be a trend towards simpler cases of synchronizations in
smaller packages and packages that provide a wrapper functionality. All in all, the trend
is evident that these simpler cases prevail, even in complex packages. Even most of the
complex cases seem to be manageable without inter-object data flow analysis. This is a
very encouraging result, as simple checkers can already cover quite a large percentage
(about 85 %) of all synchronized statements. A “simple” checker in this context is
one which can perform inter-object data flow, track references across methods to see
if they are not changed, and check all synchronizations using such references or this.
Of course, it is not certain how likely faults are present in these simple cases, and how
likely faults occur in the remaining 15 %, the complex cases.

1351

synchronized method

209

on this 582

on a class/instance var.

68

on a class

303

other cases

Figure 3.3: Total usage of synchronized statements in all analyzed packages. A total
of almost a million lines of code (LOC)was analyzed.

3.6 Comparison of the results

3.6.1 Test examples

For analyzing multi-threading problems, MaC cannot be used yet. Therefore it was not
considered further.

Rivet

By simply looking at the chart (figure 3.1 on page 15), Rivet seems to be a clear winner.
Being an exhaustive checker, it can catch all multi-threading faults by nature. This
comes at the price of a high overhead, and an architecture that is no longer compatible
with newer virtual machines. Using Rivet in current environments would require a
significant porting effort.

3.7. SUMMARY 31

VisualThreads

Based on a powerful deadlock/race condition detection algorithm, VisualThreads is
very successful at detecting many kinds of faults. Unfortunately, the fact that it moni-
tors the POSIX thread API, rather than the locks in the virtual machine itself, makes it
much less capable finding faults in Java programs. A specialized Java virtual machine
with the same monitoring algorithms would be much more useful (and probably also
faster).

ESC/Java

Due to its more powerful theorem prover, ESC/Java successfully handles all the simpler
test examples and only fails in very complex cases. However, it is hard to learn and
much more time consuming to use, because the code (either as source code or bytecode)
has to be annotated in order to be checked effectively.

Jlint

Jlint’s analysis capabilities are limited, since it does not build on a sophisticated model.
Despite this simplicity, Jlint was quite effective at finding certain deadlocks. From the
developer’s point of view, it is definitely the easiest one to use.

3.6.2 Real world problems

Dynamic checkers have been more successful with the given examples. Nevertheless,
there were other drawbacks involved in the two specific tools that were tested. As of
January 2001, one of the static checkers evaluated here would likely be more useful.
All dynamic tools would require major changes or extensions, which would not have
been feasible within the given time.

The goal of the statistical analysis was to find whether the static checkers would be
severely hampered by their incapability of analyzing complex locking schemes such as
present in the shared buffer and Dining Philosophers examples. The analysis showed
that they probably are not – the “easy” cases are far more likely than the “hard” ones.

The original version of Jlint (as opposed to ESC/Java) only covered synchronized
methods; as the statistical analysis showed, an extension to synchronized blocks
would increase its scope and usefulness substantially. Jlint’s small size, its free avail-
ability and the fact that it was not being developed further at that time made it easier to
extend. Therefore the step was taken to extend Jlint’s analysis.

Of course a statistical analysis can only cover the frequency of certain locking con-
stellations, not the likelihood that a fault is found in these. Therefore the actual value
of a tool that can cover the remaining few cases which are hardest to analyze may be
a lot higher in practice. There is no data available yet on that topic; moreover, judging
the “severity” of a fault is a very subjective process. As for the state of the art, simpler
problems need to be solved first before the very hardest ones can be tackled.

3.7 Summary

This chapter described the questions that are relevant for choosing a checking tool, no
matter what its technology (since for the developer, the usefulness is more important

32 CHAPTER 3. EVALUATION STAGE

than the technology used). Because running all tools against the entire code base is not
feasible within the given time, a small set of representative test examples was chosen.

Choosing the test examples based on certain metrics was abandoned in favor of
choosing examples that exhibit certain typical problems in multi-threaded program-
ming. The importance of each aspect that a tool covers was judged by their number of
occurrences found in the source code analysis. This metric may be too simplistic, but
no refined metrics are available yet.

It could be seen that even though static analyzers cannot cope with really com-
plex locking schemes, they successfully deal with simpler cases. These are much more
common in real source code. This is why the decision was made to extend Jlint’s ap-
plicability to synchronized blocks. This extension would bring Jlint, the simplest and
fastest checker, to the same level of more advanced static checkers, such as ESC/Java,
without sacrificing Jlint’s speed and ease of use.

Chapter 4

Jlint extensions

In its available version (as of December 2000), Jlint was only applicable to synchronized
methods, the simplest case of synchronization in Java. This was disappointing, because
the other cases, synchronized blocks, make up about 45% of all synchronization
statements in Java, as the evaluation showed. Therefore, the goal was to add support
for synchronized blocks and refine the deadlock and race condition checks Jlint is
performing with this finer granularity.

The first two sections describe the Jlint extensions in more detail. The next two
sections deal with algorithmic changes and their implications in Jlint’s code. Problems
encountered are discussed afterwards. Finally, the results of the application of Jlint to
several software packages are shown.

4.1 How Jlint works

Jlint works in two passes. Most checks are done in the first pass. The two passes work
as follows:

1. Jlint reads bytecode (.class) files and parses them. It then analyzes each method,
examining code locally. During theses proofs, the call graph is built.

2. The (global) call graph analysis follows when all class files have been processed.
In this pass, Jlint checks the call graph for potential deadlocks.

4.2 Goals

The main goal was to extend Jlint’s applicability to the “synchronized block” construct.
This would allow the following extra checks:

1. Wait/notify analysis: For each wait, notify or notifyAll call, the current
thread has to own a lock on the callee [50, p. 414]. Rather than only check-
ing whether any lock is owned, the extended Jlint should know which ones are
owned.

� If the monitor for the object that is being waited on is not held, a race con-
dition or IllegalMonitorStateException might occur when the thread
resumes execution.

33

34 CHAPTER 4. JLINT EXTENSIONS

� If the waiting thread holds other locks, these are inaccessible for the time
while that thread is waiting. Deadlocks are possible under this scenario.

2. Synchronized block analysis: In the same way synchronized method calls are
checked for potential deadlocks (loop in the call graph), acquiring the monitor
in synchronized blocks should also be checked for deadlocks. While it was
clear (from Listings D.1 and D.2 on pages 85 - 86) that synchronized blocks
can, under some circumstances, be treated equivalent to calls to a specialized
method, it was not clear initially how this should be included in Jlint.

3. Lock change analysis: During a manual analysis of intermediate files of the sta-
tistical analysis, a potential race condition has been discovered in the ETHZ data
warehousing package [24] because a lock variable (which was an array, and as
such a resource pool) was changed outside any monitors. Because only accesses
to individual array entries were guarded by a lock, but not a change to the entire
array, a fatal race condition could occur when the array is re-initialized with a
different size. It would be desirable if Jlint could find such faults automatically.

Rule 3 is best illustrated by an example. Listing 4.1 shows a scenario that is quite
similar to a real case where such a fault has been found. When the entire resource pool
is re-allocated, its creation is not guarded by a higher lock. Introducing a lock variable
for the resource pool (a simple Object will do) and using that one for locking instead
of the array will fix this bug.

Listing 4.1 An example showing a race condition when re-initializing a resource pool.
Because such a fault has been found manually in a data warehousing package, a rule to
check this was added to Jlint.

class ResourcePool {
int size = 100;
int count = 0;
Object[] resources = new Object[size];
public boolean addEntry(Object entry) {
if (count < size) {

synchronized(resources) {
resources[count++] = entry;

}
}

}
public setSize(int newSize) {
size = newSize; // race condition!
count = 0; // another race condition!
oldres = resources;
resources = new Object[size]; // race condition!
synchronized(resources) {

/* restore old values */
}

}
}

4.3 Implementation of extensions

Now, all these extensions have been implemented. The major algorithmic changes in
Jlint for implementing the three major new features are described in this section. The

4.3. IMPLEMENTATION OF EXTENSIONS 35

wait/notify analysis was implemented at a method level (locally). The synchronized
block analysis is included in Jlint’s second (final) pass, the call graph analysis. The lock
change analysis is partially implemented locally to each method, with a final analysis
at the end of parsing each class.

All extensions have in common that the aliasing problem has to be solved, at least
partially. In the Java Virtual Machine, all operations work on a stack of operands.
Therefore, the “alias” to each value on the stack has to be known in order to perform
any checking.

4.3.1 Tracking reference aliases

How field accesses work in the JVM

A field is a variable that is part of each object instance (or class, for static variables).
Because the operand stack, where all values are “nameless”, is central to the Java Vir-
tual Machine, it was necessary to add reference tracking, which keeps track of the
“alias” (the field name) of each stack element. In order to understand the way how
field accesses works in Java bytecode, here is a small example ([50, p. 381]):

Java source code Compiled bytecode
int getIt() {
return i;
}

Method int getIt()
0 aload_0 // this
1 getfield #4 // Field Example.i I
4 return // returns first element on stack

This example shows a key aspect of how fields are treated in bytecode (and in the
virtual machine): fields are never used directly. Instead, they are copied on top of the
stack with a getfield instruction. From then on, any manipulations of that field are
made on the stack. A putfield instruction stores the top value of the stack in an
instance field.

Tracking values on the stack

The putfield and getfield instructions have to be treated specially, as they are
the only indicators of the “true” identity of a value on the stack. The same goes for
putstatic and getstatic, which are the equivalent instructions for static fields.
In the extended Jlint, a reference to the original value (the field of a class) is kept for
each stack element. In order to keep track of the values used in the stack, all stack
instructions had to be augmented with code that copies that reference.

Moreover, the new instruction (which allocates memory for an object and returns its
reference) had to be treated specially as well.1 For each new call, a new field descriptor
with the name <new#n> is created, where #n stands for the number of the object that is
created (the nth occurrence of the new operation in that .class file).

Finally, the this pointer is always the 0th element on the stack (i.e. the 0th argu-
ment of a method) for each non-static method. Therefore, at the beginning of the
analysis of each method, the 0th element is set equal to a special <this> field, which
is created prior to the analysis of each class. This name (like the <new#n> fields) does
not exist in the constant pool of the class, and therefore has to be allocated specially.

1The new instruction does not directly correspond to a constructor. It only allocates the memory needed.
A subsequent call to a special <init> method then runs the constructor and any other initializations (such as
the ones in variable declarations such as int i = 1).

36 CHAPTER 4. JLINT EXTENSIONS

4.3.2 Wait/notify analysis

While checking each method, Jlint has to keep track of the locks that the thread execut-
ing that method is holding. A lock on this is held while a synchronized method is
executed. In synchronized blocks, a lock on any object is acquired and released with
monitorenter and moniterexit operations.

Lock set class

Whenever a monitorenter or monitorexit operation is encountered, the name of
the field that the locking operation works on is needed. Using the reference tracking
described in the previous section, this problem is solved. Furthermore, four major
operations have to be performed when checking the correctness of locking:

1. Adding a lock to the current set of locks.

2. Removing a lock from the lock set.

3. Checking whether a lock is currently being held.

4. Getting the most recently acquired lock.

Since properties 3 and 4 cannot be implemented efficiently with a single data structure,
a special Locks class encapsulates these (and a few other) operations. It uses both a
vector and a hash table, which is the easiest way of performing both operations effi-
ciently. Of course, since the lock set is always small, the performance was of minor
importance.

Wait/notify analysis

With the given functionality of the lock set, it is now trivial to check whether the most
recently acquired lock was the right one (the callee of the wait or notify method), or
whether any other locks are held.

4.3.3 Synchronized block analysis

This extension allows, additionally to synchronized methods, also an examination
of deadlocks in synchronized blocks. First of all, a synchronized block has to be
recognized as such! This sounds trivial, but it is made much harder by the fact that
synchronized methods are supported within the virtual machine: In the bytecode,
only a special flag is set for each synchronized method, but there are no special in-
structions. However, synchronized blocks are implemented via two special instruc-
tions: monitorenter and monitorexit. Section 4.3.1 has described how the original
values of the argument to these two operations can be kept track of.

Originally, Jlint’s call graph only included method calls. Even though it was shown
that synchronized blocks could be converted to method calls to a special method of a
special class, that extension was not quite straightforward to implement. In the end, a
method call to a special <synch> method of the “instance” OWNER.NAME was chosen to
model the dependency between synchronized blocks and method calls. OWNER is the
class that “owns” the lock (the one where the lock is an instance or static field). The
NAME entry corresponds to the name of that field.

4.3. IMPLEMENTATION OF EXTENSIONS 37

public class Example {
Object lock = new Object();
Object innerLock = new Object();

public void foo() {
synchronized (lock) {

synchronized (innerLock) { }
}
synchronized (lock) { }

}
}

Example.foo

Example.lock.<synch>

Example.innerLock.<synch>

Figure 4.1: Call graph extension for synchronized blocks.

A synchronized block results in an edge from the current method to a pseudo
method representing that block. If a method Example.foo acquires a lock on the
variable lock, the edge Example.foo � Example.lock.<synch> is added to the call
graph. If the same method acquires another lock within the first synchronized block,
the edge Example.lock.<synch> � Example.innerLock.<synch> is added. If the
same lock is released and then re-acquired, the same pseudo methods are used. This is
because only the nesting of method calls and synchronized blocks is important, not
the order in which they occur. Figure 4.1 illustrates this.

Figure 4.2 shows a slightly longer example with its extended call graph. What is
not shown in this example is that method calls within a synchronized block require
another edge from that pseudo method to the called method.

As one can see, this seamlessly combines the analysis of synchronized blocks
with synchronized methods. In this case, the potential deadlock over the two fields
a and b forms a loop in the extended call graph. The standard loop detection algo-
rithm detects this loop without any changes. The only change that was needed in the
remaining code was for reformatting the output. Despite this, it is not clear how exten-
sible such an algorithm is to further alias analysis, especially when a lock variable is
obtained via method calls.

public class Deadlock {
Object a = new Object();
Object b = new Object();
public void foo() {

synchronized (a) {
synchronized (b) { }

}
}
public void bar() {

synchronized (b) {
synchronized (a) { }

}
}

}

Deadlock.foo

Deadlock.a.<synch>

Deadlock.b.<synch>

Deadlock.bar

Figure 4.2: Call graph extension for Listing F.2.

In order to avoid duplicate locks, the new Jlint uses the Locks class (see Section
4.3.2) to keep track of the lock usage. By knowing which locks are held at the entry
of a method, one can avoid adding another edge to the call graph. This originally was

38 CHAPTER 4. JLINT EXTENSIONS

a major problem. There is no API for building the call graph, nor is there any way of
checking for the existence of an edge in it. The call graph is assembled in the method
descriptor class (in the main loop of the local analysis), and only the algorithm itself
guarantees that no edge is added twice. This works fairly well until one extends the
call graph to synchronized blocks (see Figure 4.1).

The chance is fairly high that the same method is called in several places with the
same lock being held. This would result in the same edge being added several times to
the call graph. Not only would the same warning be issued multiple times, but the call
graph analysis would also be slowed down greatly. That algorithm might even be stuck
in infinite loops. Such a behavior had to be avoided at any cost.

By keeping track of the locks that have already been acquired when a method is
called, no redundant edges in the call graph are created.

4.3.4 Lock change analysis

The last extension was an analysis of changes made to locking variables, i.e. putfield
commands on them. For each class, another lock set is used for this purpose only. Each
variable in that set is checked for assignments outside the two special initialization
methods <init> and <clinit> and outside any monitors.

In fact, the check is done for any reference during the local (method) analysis, since
their usage as locks is not known beforehand. At the end, warnings are printed for each
variable that has been used for locking purposes.

4.4 Code changes

This section describes the changes in Jlint’s code at a more detailed, lower level. Table
4.1 shows the changes to the Jlint code in simple numbers. Version 1.12 has been
formatted using XEmacs’ “autoindent” feature. Thus the large code “growth” from
version 1.11 to 1.12, which are identical except for the fact that the monolithic header
and code files have been split up into several files (one for each class, or a few classes
that belong together). Splitting up the files also introduced some extra whitespace,
along with many extra include directives and include guards; this, together with the
reformatting, makes up the large difference in lines. In table 4.1, the size of the different
versions in lines of code (LOC) and non-comment lines of code (NCLOC) is listed.

Version LOC NCLOC

1.11 (last release) 5270 4533
1.12 (separate files for most classes) 6254 5110
2.0 (enhanced Jlint) 6994 5615
Difference between versions 1.12 and 2.0 740 505

Table 4.1: Growth of Jlint code

Since none of the old code has been rewritten (as it should eventually be), the code
reuse was quite high, at the cost of much time spent for understanding the code. Only
very few changes to existing code were made; the major part of the implementation
of the new features were made by additions to existing methods, or by creating new
classes. Partially, the fact that the existing code was hard to change was responsible
for that, but also the fact that synchronized blocks were not at all supported by Jlint
before.

4.4. CODE CHANGES 39

String pool

For being able to create symbolic constants that were not part of the “constant pool”
in a .class file, a special string pool class was created. The reason was that some of
these constants could not be stored locally, because they would have to be retrieved
much later for printing error messages.

New messages
� Lock a is requested while holding lock b, with other thread holding a and re-

questing lock b. This message gives a more detailed output about (potential)
deadlocks occurring with synchronized blocks. The analysis in the extended
call graph is the same as for methods.

� Value of lock a is changed outside synchronization or constructor. This fault
has been found in the ETHZ data warehousing package [24]. In that package,
an array object represented a resource pool. Each write access to an entry was
guarded with a synchronization over the entire array. Changing the size of the
resource pool required allocating a new array. Such a situation can lead to a race
condition, if another thread is using the object while it is re-allocated. Therefore
this rule was created; also see Section 4.2

� Value of lock a is changed while (potentially) owning it. A similar situation as
above. This fault has never been found in practice; it would likely result in an
IllegalMonitorStateException at run time.

� Method instance.wait/notify/notifyAll is called without synchronizing
on instance. This is the improved analysis of the lock set for wait or notify
calls.

� Holding n lock(s): {lock set}. This message improves the diagnosis of wait/notify
problems. It is printed in addition to the old message.

New fields

Some existing classes in Jlint have been extended by new fields. The most important
ones are listed here:

Classes field_desc and var_desc, struct vbm_operand
� const field_desc* equals: this read-only reference points to the “original”

value of a stack element (or any local variable), as outlined in Section 4.3.1.

� const_name_and_type* name_and_type (only in class field_desc): in or-
der not to lose the type of the values tracked via equals, this extra pointer was
needed.

Class method_desc
� Locks locksAtEntry: keeps track of existing locks in order to cut down the

redundancy in the call graph.

� const field_desc* is_this (argument to parse_code). A special equals
reference that is unique for each analyzed class.

40 CHAPTER 4. JLINT EXTENSIONS

Class class_desc

� Locks usedLocks: After the method analysis, this set of variables is checked
for assignments outside monitors or constructors.

4.5 Problems encountered

Extending Jlint was much more difficult than anticipated. The key reasons are given
below. This should not be taken as a criticism of the original author’s knowledge of
program design and C++. Jlint was written in a very short time (one month), and shows
many signs of incremental, “historical” growth without a redesign.

4.5.1 Splitting up the monolithic file

Jlint originally consisted only of four files: three header files (one for the Java byte-
code mnemonics, one for the warnings, and the “real” header file) and one source file.
The latter was almost 5000 lines big, with type declarations, global variables, global
functions and all classes put together. This was clearly no longer maintainable, so the
first decision made was to partition all classes into separate files.

Because inlined functions were used heavily throughout the code, some classes
could not be separated.2 However, each file now either contains a single class or several
classes with a common purpose (e.g. for the call graph, the node and edge classes are
in one file). The goal of having many small files which are easier to edit has not been
quite met: most of the code is located in the method descriptor class, even in only one
function. Without a redesign, this problem remains.

As many dependencies as possible were factored out into separate include files.
The main problem was the fact that many classes access each other’s members directly,
usually in inlined functions. In order to compile this, the compiler has to know the exact
size of that class. This requires parsing the entire header file of the referenced class.
This is why almost every file includes every other one indirectly. For this to work, the
include directives have to be in the correct order - otherwise the nested dependencies
cannot be resolved by the preprocessor. The heavy inter-dependencies between all the
classes become quite apparent here.

4.5.2 Architectural shortcomings

The two worst problems are outlined here. For more suggestions about how to design
a new checker, see Section 6.2.

Heavily interdependent classes

The main source of problems was the fact that all classes are heavily dependent on
each other. This is partially given due to the problem structure: a method has to have
knowledge about its class, its local variables, and many other properties. Unfortunately,
this has usually been implemented by direct pointers to other objects. From there, the
necessary information is accessed via public variables. This leads to long chains of
direct member accesses, which disallow any major changes in the design.

2The high usage of inlined functions is also the reason why many header files have no corresponding .cc
file; in such cases, the class was entirely defined as a set of inlined methods.

4.5. PROBLEMS ENCOUNTERED 41

Many dependencies were introduced which were not needed. For instance, each
method has a pointer to its vertex (node) in the call graph and also manipulates the
call graph directly. Same for accessors and callees. Because there are no container
classes for these data structures, this leads to heavily convoluted code which is almost
impossible to maintain.

Data structures not separated from analysis

The lack of container classes is similar to this problem: The algorithms are not sepa-
rated from the components they work on. Each descriptor class (mainly method and
class descriptor) performs the analysis itself, instead of merely giving access to the
“innards” to an algorithm. This makes each class very long. Above all is the method
descriptor class, which contains more than half of the entire Jlint code, most of which
in one, huge function (parse_code).

Data structures too closely modeled after class files

The Java class (.class) files are designed for having a minimal size. Much information
is stored in a constant pool, which holds, among other information, all variables and
method names. This information is rarely needed at run time (only for reflection classes
and exception stack traces); therefore it is not directly accessible within a method.

Because of this, every access to such meta-data is rather cumbersome: the getfield
operator, for instance, has only the index of the name_and_type entry in the constant
pool as its argument. Therefore, a field of type Object and name a is stored in the
constant pool as shown in figure 4.3.

3) CONSTANT_Fieldref[9](class_index = 5, name_and_type_index = 17)
5) CONSTANT_Class[7](name_index = 19)
6) CONSTANT_Utf8[1]("a")
7) CONSTANT_Utf8[1]("Ljava/lang/Object;")

17) CONSTANT_NameAndType[12](name_index = 6, signature_index = 7)
19) CONSTANT_Utf8[1]("Equals")

3) field_ref

5) class

field of

17) name_and_type

type

19) ’Equals’

name

6) ’a’

name

7) Ljava/lang/Object

type

Figure 4.3: Constant pool entries for a field.

The entries in the constant pool look rather convoluted; however, once their depen-
dencies are visualized, once can see that this is an elegant and efficient way of storing
that information. In Jlint, all the indirections involved in obtaining the full “identity”

42 CHAPTER 4. JLINT EXTENSIONS

of a field have to be taken for each putfield or getfield command which accesses
a field. This makes the code rather clumsy, as shown in Listing 4.2.

Listing 4.2 Code snippet from Jlint: getting the field context.
const_ref* field_ref = (const_ref*)constant_pool[unpack2(pc)];
const_name_and_type* nt =

(const_name_and_type*)constant_pool[field_ref->name_and_type];
const_utf8* field_name = (const_utf8*)constant_pool[nt->name];
const_utf8* desc = (const_utf8*)constant_pool[nt->desc];
const_class* cls_info = (const_class*)constant_pool[field_ref->cls];
const_utf8* cls_name = (const_utf8*)constant_pool[cls_info->name];
class_desc* obj_cls = class_desc::get(*cls_name);
field_desc* field = obj_cls->get_field(*field_name);

All this code is needed because Jlint’s data structures only map the class files into
memory, rather than building a higher level data structure. This code is very difficult to
understand (all those direct member accesses yield integers, which are the index in the
constant pool) and error prone. It makes further analysis of field accesses more difficult
than needed.

4.5.3 Implementation problems

The design problems described above lead to many difficulties during the implemen-
tation of the extensions. There were also some implementation details that made the
work harder than necessary.

Lack of comments

The entire Jlint code was very sparsely commented. Usually the only comments were
about the purpose of each class and the meaning of some constants. The functionality
of methods, for instance, was usually undocumented. Therefore, finding out the correct
usage of each function (including the exact meaning of each parameter, the context in
which it should be called) was usually quite a bit of guesswork and trial and error.

Sometimes, one variable was duplicated, because it was not always apparent that
it existed elsewhere (e.g. in a superclass or in one of the many fields of a member of
a class). Of course such redundancy was removed whenever it was found. This could
probably have been avoided by a short introductory document to Jlint’s classes. Such
a document is too often omitted when writing software due to time constraints.

Huge main loop

The method_desc::parse_code method contains practically the entire analysis. It
does not only parse the code, but it also performs the entire local analysis and builds up
all the intermediate data structures. The sheer size (almost 2500 LOC) and complexity
of that single function makes it very hard to get into the code. While much of the
function consists of simple cases in a large switch statement, some analyses go far
beyond that. The Jlint extensions aggravated this problem even more.

Call graph extension

There were some difficulties about how to insert an edge into the call graph correctly.
Because each method keeps one pointer to a node in the call graph and inserts any

4.5. PROBLEMS ENCOUNTERED 43

edges directly into the global call graph data structure, the procedure is very error-
prone. Also, it was not quite clear how to ensure that such edges were marked as
“potentially dangerous” with respect to multi-threading. As Konstantin recommended,
one auxiliary function to build up the call graph, which is normally only used after the
methods have been processed, was called within the main (parsing) loop to achieve that
effect.

This made the block analysis work – at first. However, at that time, TYPE.NAME was
used for the pseudo class name rather than OWNER.NAME (see Section 4.3.3). Many lock-
ing variables are of the same type (often type Object), so the former naming scheme
did not suffice to distinguish between all the locks. Because no two variables, even
of different type, may have the same name, and because their type does not matter for
locking purposes, this change did not cause any new problems.

Memory management

The extended analysis required the maintenance of a much larger context information
until the end of Jlint’s execution (for the final call graph analysis and printing warn-
ings). This required “recycling” some local information, so it could be stored for later.
A string pool class was created as a “limbo” where such strings could continue to ex-
ist until the entire analysis was over. That string pool class does not implement a full
memory management; for instance, for the purpose of Jlint, no reference counting or
garbage collection was required.

Lack of const usage

This is a minor issue: the code could have been made safer (and also faster) by using
const to denote read-only references. In some cases, it would also have been easier
to understand the code. Using this identifier often is a more recent coding convention
which has not yet been adopted by all C++ programmers.

Context (lock sets)

When analyzing a method, the set of locks at the entry of a method was originally
“inherited” by the current lock set of a method. However, this sometimes leads to false
warnings, and needlessly clutters the call graph.

Figure 4.4 shows an example of this case. The edges to and from Example.a.<synch>
are created during the local analysis, when the synchronized block and the method
call to bar are encountered. If another edge from Example.a.<synch> to baz were
be added (the dotted line), the transitive closure would not change, but the call graph
would be denser and take more time to analyze. This would have been the effect of
including the set of locks held at the beginning of each method (locksAtEntry) into
the current lock set, whenever a method is analyzed.

Instead, locksAtEntry is used to ensure that such redundant edges are not added
to the call graph (even if another synchronized(a) block were found in the method
bar). The edge bar � baz is added during the global data flow analysis, by existing
Jlint code, which ensures having the full transitive closure.

Although it would have been possible as such to insert edges for any method call
within a synchronized block, calls to methods of other classes than the current one
are now ignored. This means that the locking context across classes is not investigated.

44 CHAPTER 4. JLINT EXTENSIONS

public class Example {
Object a = new Object();
public void foo() {

synchronized (a) {
bar();

}
}
public void bar() {

baz();
}
public void baz() { }

}

Example.foo

Example.a.<synch>

Example.bar

Example.baz

Figure 4.4: Call graph extension for synchronized blocks.

In the current Jlint version, the call graph filled up too quickly, and the analysis sud-
denly took minutes rather than just seconds. Whether this is due to the NP-hard nature
of the call graph analysis or a flaw in the call graph extension scheme, could not be
determined. In any case, this part of Jlint needs to be rewritten.

4.6 Application of the new Jlint

After the extensions were implemented, Jlint was run on the examples described in sec-
tion D.1 on page 85. A detailed breakdown of the output and a comparison to the other
tested checkers, in particular the old version of Jlint, can be found in Appendix E.2.
Jlint now successfully checks three more programs, while it produces a new false posi-
tive for the ESC/Java example (Listing D.8). This makes Jlint as effective as ESC/Java
(one case where ESC/Java failed was due to a bug in its theorem prover; the algorithm
as such would have been capable of finding that fault).

4.6.1 Test examples

Old examples

As expected, Jlint now successfully detects the deadlocks in all deadlock examples,
specifically in D.1, D.3 and D.5. This is a direct consequence of supporting synchronized
blocks. Jlint still fails to detect the unusual race condition found in example D.6, and
now issues another spurious warning in the ESC/Java example (D.8). In a previous
version, Jlint had simply ignored the difficult part in the code (which has deliberately
been designed to fool static checkers).

Besides finding three more faults, Jlint also no longer prints a spurious warning
for example D.16, where wait() was called inside a synchronized (this) block.
Therefore, the test examples already indicate quite an improvement: 7 rather than 4
cases pass successfully, while a fifth case now fails (because it only passed by luck

4.6. APPLICATION OF THE NEW JLINT 45

Threads
Visual

0

5

10

15

Old Jlint New JlintESC/JavaRivet

Tool did not run/inconclusive output

Beyond scope of tool

False or missing warnings

Correct output

Figure 4.5: Test results for the 15 given examples, including the new Jlint.

previously). In simple numbers, this is an improvement by 75%! The seven complex
examples – shared buffer and Dining Philosophers – are still outside the scope of Jlint.

Additional test examples

In order to ensure the correctness of the extensions, a couple of new examples were
made to test Jlint. These examples all passed successfully in the new Jlint, while the
old version failed to detect the faults therein or reported a warning for the wrong reason.

4.6.2 Trilogy’s source code

The detailed results of the analysis can be found in section F.2 on page 119. Because
the number of warnings was very high (usually in the hundreds), several categories of
warnings had to be filtered out. This is because Jlint still lacks some crucial function-
ality, such as tolerating shared read locks.

Table F.5 summarizes the result. All the warnings about possible lock variable
changes – one very specific extension of Jlint – were false positives, since these changes
were only made during initialization. This is easily verified manually, and usually be-
yond the context of static checking. Jlint also reported 12 missing super.finalize()
calls; these cases all require code changes, at least for safety purposes. In one case, a
genuine fault was found by this simple check; in the other cases, one relies on the fact
that the superclasses do implement a finalizer.

None of the deadlock warnings, neither those previously present nor those from
the extensions, were actual faults. Because the analyzed packages were already fairly
mature, it was not to be expected to find such a fault. However, Jlint detected a genuine
race condition in a class that was used for debug output.

Interestingly, Jlint was most successful with null pointer checks. It reported over
20 cases of unsafe use of parameters and six cases where null pointers would likely
be dereferenced under some circumstances (e.g. if an input string did not have the right
format, some pointers to substrings would then point to null). Two of these warnings

46 CHAPTER 4. JLINT EXTENSIONS

has been confirmed as being related to an error, and some other cases will now lead to
extra comments in the code (which is also an achievement).

Out of the “other” category, the “integer overflow” bug is noteworthy. In one mod-
ule, a hash value comprised 64 bits. It consisted of two 32 bit outputs of a hash function.
After the first hash function, the value was to be shifted left by 32 and then ORed with
the result of the second hash function. However, the programmer probably assumed
a wrong operator precedence; the extension of the value to 64 bits occurred after the
left shift by 32. This fault was easily fixed, and (together with numerous null pointer
warnings) pointed out yet another weakness in a deprecated module. As a consequence
of these warnings, that module will likely be removed from the code altogether.

4.6.3 Other source code

Concurrency package

This package is still too complex for Jlint. It pointed out that the lack of a working con-
text switch (as it is used for any statement that transfer control, e.g. if, for, return)
can produce a lot of (new) spurious warnings if it is used inside a synchronized block.
Despite that, there was a slight reduction of total warnings from 197 to 170, due to the
better treatment of wait and notify[All] calls.

Quite a few warnings (over 20) were because of some bugs in Jlint that still remain.
Those warnings only occur under specific (complicated) circumstances, which were
apparently not too uncommon in that package. The numerous (26) deadlock warnings
are hard to verify; but it can be assumed that they are false positives, given more context
(which is not usually not available at compile-time). The remaining warnings are all
cases were manual inspection could disprove the warnings, and also show that a static
checker cannot successfully cover such cases (such as – potentially infinite – lists of
locks).

ETHZ Data warehousing tool

Jlint was very successful in this case. Again, the warnings had to be filtered before they
were useful. After filtering, only important warnings remained.

Jlint’s specific extension for locking variables detected a fault which has meanwhile
been fixed. Other than that, it reported a couple of other warnings, only one of which
being definitely a false positive. Some other warnings refer to unsafe code (assump-
tions that super classes do not change or that a certain reference is never null) in the
best case and potential faults in the worst one. The ratio of null pointer warnings
that are not just about unchecked parameters is very high here. Possibly algorithmic
properties can guarantee the correctness of these cases.

4.7 Summary

Despite many difficulties, all the desired extensions for Jlint could be implemented.
Nonetheless, the extensions clearly showed the limitations of the current Jlint architec-
ture, and while it may still be possible to add some small features to the current code
base, this is not recommended. Instead, Jlint should be rewritten from scratch, with the
insights gained during writing the extensions.

Applying Jlint to various packages revealed at least 12 (confirmed) faults, two in
the area of multi-threading. No deadlock warnings could be verified as a fault as yet.

4.7. SUMMARY 47

Some warnings had to be ignored altogether because the checks are not refined enough.
With only some warnings selectively turned off, Jlint can already provide valuable
information about potential trouble spots in a program. This shows that even a simple
program checker can provide a great benefit, as long as the implemented checks are
reliable and do not generate too many spurious warnings.

Chapter 5

Discussion

This chapter discusses the results of the two major phases of the project:

1. Evaluation of existing tools.

2. Extension and application of Jlint.

It also describes possible uses of current static checkers in software development.

5.1 State of the art

There are two major categories of program checkers: dynamic and static checkers. The
former monitor program execution at run time; the latter work “at compile-time” and
try to find faults without actually running the program.

5.1.1 Dynamic checkers

Dynamic checkers can build on years of experience and practical usage that go back
as far as using assert macros and debuggers. Nowadays, more enhanced tools check
function usage (profilers) or memory allocation problems. Therefore, the problem of
how to monitor a running program is well understood. Still, new approaches are being
taken to make this approach scale up beyond monitoring simple variables; MaC is
one such project [11]. For checking multi-threading problems, the problem of the
non-determinism of the thread schedule has to be solved, which has not been done in
conventional dynamic checkers (also see Section 1.2.1).

Once this problem is overcome, dynamic checkers can take advantage of their
biggest strength: full knowledge of the program state. There are two ways of elim-
inating the total dependency on a particular schedule:

1. Exhaustive scheduling.

2. Keeping the (locking) history of a program and reconstructing possible alterna-
tive outcomes.

The first approach is taken by Rivet [12]. It has been shown to work well and find all
faults in small programs. Still, the overhead involved is usually too high to allow an
application of Rivet to large scale software. Because the Rivet project was discontinued

48

5.1. STATE OF THE ART 49

two years ago, no further research has gone into the area of potential performance gains.
The major problems with keeping Rivet in line with the restrictions of new Java Virtual
Machines has proved too much work for a single research group.

The second approach is taken by the other tools. Only VisualThreads [14] supports
this fully automatically; for the other checkers, the programmer still has to supply
many assertions and code a lot of the checks himself. It is possible that MaC [11], once
it supports synchronization statements, can make this easier by supplying a generic
template that will work on any Java source code.

While a working commercial tool exists with VisualThreads, it still has the big
drawback that it only works on Alpha Unix, on the low level of POSIX API calls.
Having such a tool for Java (possibly working non-interactively in the background
rather than with a GUI that slows down the checking) would be very useful. Likely
this would require patching the virtual machine itself. Despite that, VisualThreads has
proved the validity and effectiveness of this approach, because it works very well on a
given C example (Dining Philosophers), where static checkers fail because they do not
recognize the circular structure of the protocol (the modulo operator used for the array
indices).

5.1.2 Static checkers

The merits of static checking are described in section 1.2.2 on page 4. Static check-
ers can be divided into extended compilers and (more complex) translators of programs
into a mathematical model (theorem provers). The latter approach is theoretically more
strongly grounded, while the former has a tradition in continuous improvement of com-
pilers.

Although theorem provers have more sophisticated checking capabilities than sim-
pler model checkers, they still fail to capture many algorithmic properties of programs,
which has to do with their potentially infinite nature: loops could never terminate, and
lists are not bounded in length. Therefore, the low-level, compiler-based approach
stands up very well against more sophisticated methods. Indeed, while quite a few
tools in that area are available today, many theorem provers are still in their early de-
velopment stage.

Not very much work has gone yet into checking multi-threading properties of pro-
grams. This is surprising, because this area is a traditional weakness of dynamic check-
ers, and some checks (e.g. for potential deadlocks and race condition) could be very
effective if they were refined enough. As for today, no tool fully supports the necessary
features for easy, comprehensive checking of race conditions (which would include
shared read locking). In the area of deadlock checking, the “identity” (equality) of
two object instances is very hard to verify statically. This still leads to many spurious
warnings, because a static checker has to assume the worst case to guarantee a certain
soundness.

Nevertheless, the two available checkers (ESC/Java and Jlint) are already quite
powerful with respect to common synchronization scenarios, if only certain categories
of warnings are used. Both tools still produce many spurious warnings when it comes
to array bound checks and potential deadlocks. In the latter area, it is still quite hard to
supply the necessary source code annotations to ESC/Java, but work is in progress to
improve this. Both Jlint and ESC/Java show that static checkers have a great potential,
and are on their way to becoming a standard development tool like lint or the -Wall
switch for the GNU compiler (but going much further than those).

50 CHAPTER 5. DISCUSSION

5.2 Capabilities of Jlint

The static checker Jlint was the most promising tool, given the absence of working
dynamic checkers with full Java support, and the fact that the other static checker,
ESC/Java, still requires many annotations in order to work effectively. Jlint’s amazing
speed and ease of use make it well applicable to large scale software.

Jlint found two faults in the area of multi-threading: a race condition in a debug
class, and a race condition when re-initializing a shared resource. The latter was thanks
to a specialized check that was built in after such a fault had been found through manual
inspection. It is hard to say whether the given algorithm for deadlock checking is too
simplistic or whether the checked software was already mature enough not to have
simple deadlocks.

Notwithstanding, it was clear that the race condition detection suffered severely
by the lack of read-only notions (and other cases of “slightly unsafe” locking that still
produces the correct result). Such checks also require additional information, which is
not available in source or object code. Rather than annotating a program, a template-
based solution (such as in MaC) is far easier to maintain, and scales much better to
large software packages with hundreds of source files.

Another area where Jlint is still lacking is its alias analysis. Tracking equivalent
values of references across method calls is very hard, and impossible to implement with
the current Jlint architecture. Right now, Jlint cannot even solve this problem within
the same method or class (for instance variables). Because aliases for locks within
the same class are commonly not used, the assumption was made that no aliases exist.
This is usually, but not always, the case, and may cause Jlint to miss some deadlocks
because it cannot resolve the aliased variable.

5.3 Usage of static analyzers in software development

Two directions are possible for using static checkers in a modern software develop-
ment process: 1) Usage as an (automated) stage prior to (time consuming) integration
and reliability testing, or 2) as a code review/debugging tool that points out potential
problems, which have to be verified manually.

As an automated tool, an analyzer should (ideally) issue no warning for correct
code, or only in very rare circumstances (so this warning can be automatically turned
off in future runs once it has been verified). The currently available checkers are not
very useful for this purpose. They still produce far too many warnings.

On the other hand, Jlint or ESC/Java can already be very useful for preparing a code
review. With only the most reliable warnings activated, they can give a list of issues
that need to be checked during a review. Furthermore, ESC/Java could also be used
with full annotations to formalize comments and verify certain algorithmic properties
in small, complex packages.

It is more likely that future work will proceed in the area of tools that are used
manually, either as a tool that improves the capabilities of debuggers (or just gives ad-
ditional information as an independent tool) or helps to spot potentially faulty code.
In the latter category, quite a few tools already exist today that find coding convention
violations, which are not actual faults but may still cause problems with software main-
tenance. Some of these checks are also included in Jlint (almost all inheritance checks
fall into this category).

5.4. SUMMARY 51

5.4 Summary

It has been shown that simple static checkers can already cover a large number of
potential faults. While complex static checkers are more powerful, they also fail in their
analysis of complex data structures, which reflect a potentially unbounded complexity
of the algorithm.

Extended dynamic checkers with specializations for locks have a great potential;
but so far, no working, publicly available implementation exists. Because of this, the
decision has been made to use Jlint, a fast data flow analyzer. In its given state, some
of its checks still need refinements to be truly useful. Other checks are already quite
mature and have successfully been applied to large scale software packages.

Because static checkers still generate a large number of spurious warnings, an auto-
mated usage is still far from realistic. However, as a verification step prior to testing or
a code review, static checkers can already enhance the software development process
today.

Chapter 6

Future work

In this chapter, an outlook is made on possible extensions in the area of dynamic and
static checkers. Immediate Jlint extensions, which could improve its usefulness a lot,
are described first. Because Jlint should eventually be rewritten, design guidelines
are given to create a new static checker, which will be more extensible and maintain-
able than Jlint. This chapter concludes with some ideas about how dynamic and static
checkers could be improved or even combined in the future.

6.1 Future Jlint extensions

The list below shows the most important steps that need to be taken for improving
Jlint’s capabilities for analyzing multi-threading problems. Of course, this list is in-
complete and would likely be extended once some of the listed features were imple-
mented. The priority of each item (1 highest, 3 lowest) is given in brackets. Some
extensions are far more difficult to implement than others; in particular, those that re-
quire an exact context across methods or classes require a global data flow analysis.
General usability issues such as reducing the total number of spurious warnings are
not shown here: Such issues are commonly known, but it is not yet known how to
implement a solution.

� (1) Restructuring/rewriting of the data structures: Some classes are poorly de-
signed, and in general the given framework is inadequate for a more powerful
analysis (such as the analysis of lock sets when calls from one class to another
class are made).

� (2) Context merging (return, exceptions, if, while, for) to eliminate some
spurious warnings. See section 6.2.3.

� (2) Suppressing unnecessary warnings for variables and methods that are read-
only. A resource that is shared for reading is a very common scenario in real
software. Therefore, Jlint should suppress a warning about concurrent variable
or method accesses if the following conditions hold:

Shared-read variables: The variable is not accessed outside the constructor or
synchronized(this) blocks.

Shared-read methods: The method does not access fields that are not shared
for reading (according to the definition above).

52

6.2. DESIGN OF A COMPILER-BASED ANALYZER 53

� (2) Adding a check for “const methods” (as in C++): In C++, a method which is
declared const may not change the this instance or any const (final) fields.
As a consequence of that, calls to non-const methods and the usage of const
fields as non-const arguments (in method calls) are forbidden. This is one of
the few areas where C++ is more type safe than Java. Adding such a check to
Jlint (const annotations could be stored in a template) should not be very hard,
and would be a minor extension of “shared-read methods” (see above).

� (2) Full analysis of lock sets across method/class boundaries for wait and notify
calls.

� (2) Checking the visibility of object instances in other threads: A non-synchronized
method where the callee instance is not visible outside the current thread (e.g.
as a local variable) can be called without any danger of race conditions. In such
cases, a warning should be omitted. Verifying this requires evaluating accessor
information.

� (2) Fixing the fault in the warning selection switches: right now, switching warn-
ings on and off based on their message code produces an empty output.

� (2) Improving verbosity/information content of some (existing) warnings.

� (2) Adding an improved selectability for warnings, e.g. by a severity level or
likelihood.

� (3) Support for locks on classes (getClass) in synchronizations.

� (3) Eliminating spurious warnings where implicit synchronization exists (e.g.
streams).

� (3) Texinfo documentation: fixing old spelling and grammar mistakes from ver-
sion 1.11, better Texinfo tagging of text (e.g. @var), full @node tree for docu-
ment.

6.2 Design of a compiler-based analyzer

During the implementation of the Jlint extensions, many limitations were found in the
current architecture of Jlint. Some of them are design flaws that should be avoided
for any software, others were limitations that apply specifically to program checkers or
even Java bytecode verifiers.

6.2.1 Easy access to meta data

For all the crucial information about fields (or methods and classes), their descriptors
should offer direct accessor methods for these properties. These include:

� name and type

� for methods: parameters, signature, lock sets

� for fields: set of possible values or range, . . .

54 CHAPTER 6. FUTURE WORK

This enumeration is of course incomplete. It is obvious that the different descriptors
should encapsulate that information in an API rather than only having index entries to
a global data structure. Such an encapsulation will make the data flow analysis much
more extensible (e.g. a possible set of values could be stored along with a possible
range; the set of possible values would be set to “any numbers” or * once it grows
beyond a certain bound).

This would be a first step towards an improved aliasing analysis. Of course, having
the design that allows keeping track of equivalent references does not solve the problem
yet; but it would at least make it very easy to cover (and prove) the simple cases, where
no alias exists (private instance or class variables).

6.2.2 Resource management

A problem that was not apparent before is the fact that much more information has
to be retained until the end of the first pass (reading the class files). Many analyses
require the entire call graph, as well as more detailed information about the calls. Jlint
was built with strictly partitioned local and global analyses, and only certain strings
(source file names, line numbers) were kept in memory for printing the warnings.

The extended analysis of synchronized blocks required the availability of field
information until the end of the first pass, and the field names until the end of the
second one. This requires its own, small memory management. The string pool was a
first, simple step towards this, fulfilling the current needs. It is probably not adequate
for Jlint extensions, which may require a more sophisticated memory management (e.g.
reference counts).

This problem suggests Java as an implementation language for a checker, because
its built-in garbage collection solves this problem. In C++, a similar functionality
would have to be implemented first.

6.2.3 Full control flow analysis

Jlint includes an implementation for a full control flow analysis (context splits and
merges for control flow statements such as if, for, return). Unfortunately, this im-
plementation is very obscure (because it is not commented and involves memcpy calls
with certain offsets rather than explicit copies) and does not seem to work fully for the
local analysis.

A simplified control flow analysis with only forward jumps, such as found in
if/else blocks, would suffice (rather than fully implementing backward jumps, which
occur in loops). Full support for backward jumps would include counting the number
of jumps (for avoiding infinite loops); unrolling a loop for a given number of times is
much simpler, and commonly used in other analyzers.

This feature would avoid a lot of spurious warnings about freed locks, which only
occur because a monitorexit statement can occur several times for only one corre-
sponding monitorenter operation. It is automatically “embedded” by the compiler
prior to a return or break statement, in order to release the lock in any possible case.
The following code snippet demonstrates such a situation.

6.2.4 Combining the lock and call graphs

The call graph extension described in section 4.3.3 is one way to include synchronized
blocks in the call graph. Possibly this is the best way, since it allows for nested syn-

6.2. DESIGN OF A COMPILER-BASED ANALYZER 55

Listing 6.1 Extra monitorexit operations inserted by the Java compiler.
synchronized(lock) {

if (resource == null) {
// compiler will insert "monitorexit"
return;

}
/* do something */

} // "monitorexit" for closing bracket

chronizations combined with method calls. It fails, however, to include a more ad-
vanced data flow analysis, where the interaction with another object results in a refer-
ence which is used as the lock variable.

For this reason, the call graph also has to be built in several passes (also see section
6.2.7 below). This report shows one way to include synchronized blocks, but it is
not necessarily the most elegant way. For example, ESC/Java does the reverse: it
treats synchronized methods as normal methods with a synchronized(this) block
spanning the entire method. This helps to separate the call graph from the lock graph.

6.2.5 Separating analysis from data

Not separating the descriptor classes from the graph and code analyses was a violation
of a basic design principle. The graph generation, analysis and output is scattered over
several classes, including some where it should definitely not be. For instance, the
graph data structure is directly manipulated in the method descriptor class. This was
probably a result of the amazingly short time in which Jlint was developed. Regardless,
this drastic design shortcut leads to many errors during development, and makes it hard
to maintain the program.

6.2.6 Maintain rich context for output

Jlint has been written with a fixed set of checks in mind. As many resources as possible
are only stored locally to one method or one class, and they are explicitly replicated if
they may be needed for warnings later on. For now, such copies include strings (such
as file names) and line numbers (in the callee descriptor class). In such cases, a richer
context should be stored for later analysis. This would not only a potentially improve a
latter analysis of the found violations (and maybe eliminate some spurious warnings),
but also allow a more detailed output.

For instance, a call graph including the lock sets or a possible execution trace would
greatly improve the usability of a static checker. Of course, implementing these feature
is far from trivial.

An indication of the likelihood of a warning would also be very helpful. This could
either be done numerically or (probably better, since numbers will not be accurate)
verbally, e.g. “certain fault”, “probably fault”, “unlikely fault”. The more assumptions
had to be made during checking, the less likely a warning is correct. Having the full
context for a warning would help to determine the “confidence level”.

56 CHAPTER 6. FUTURE WORK

6.2.7 Multi-pass call graph analysis

Jlint now only performs two passes. Most checks are done in the first pass, and a call
graph analysis follows for finding potential deadlocks. By performing other types of
analysis at a later stage (after the call graph is built), one could take advantage of that
extra context. This requires storing the context at the beginning of each method.

foo bar
context(foo)

...
context(foo, bar)

Figure 6.1: The problem of propagating the context: The context of each method can
only be propagated by one recursion level in one pass.

If one separates the state of a method from the call graph, a difficult problem re-
mains: For building up the context at the beginning of a method (e.g. the lock set or
the possible states of instance variables), one can only cover one level of recursion at
a time. For example, a method foo that acquires a lock a will cause the checker to
store that information while parsing the method. If another method bar is called while
holding the lock, this context cannot be included in bar before the entire call graph is
built up (because the method bar might already have been parsed, with only its local
context, when foo is read). Further recursions (method calls from bar in this case)
will require further passes on the extended call graph. This is a major disadvantage of
building up the call graph with extra state information rather than using the extended
call graph with pseudo method calls.

6.3 Future directions for formal analysis

This section outlines some possible future directions for static and dynamic analysis.
It is of course hard to predict future development in a field where progress is made so
fast.

6.3.1 Dynamic checking

Scope

Dynamic checking for multi-threaded programs works as such – VisualThreads demon-
strates this, although it is not yet very effective for Java programs. Still, performance
is a huge problem for any dynamic checker. A possible direction is the implementation
of a virtual machine whose goal is not fast code execution, but a small state and easy
verification of aliasing. This should facilitate and speed up dynamic checking. The
Rivet project has gone into that direction, but it has not arrived at its goal.

The MaC approach is a very effective way to monitor a large body of code. Its
template-like approach allows a convenient customization of the checks and an easy
inclusion of many fault categories. Once its performance bottlenecks are taken care of,
support for synchronizations and a lock detection algorithm can be added to it. Work
in this area is already in progress.

6.3. FUTURE DIRECTIONS FOR FORMAL ANALYSIS 57

Usage

The usage of dynamic tools is likely to remain as it is now: once the software is fully
functional, it is tested with a dynamic checker. Today such tests are restricted to mem-
ory allocation and access problems. In the future, they will likely be extended to multi-
threading problems. It is unlikely that this prevents static checkers from catching on,
as they can already be applied before the software is finished.

6.3.2 Static checking

Scope

The current static checkers are still rather weak when it comes to multi-threading prob-
lems. This should be changed as soon as possible. In fact, this area could become
a key strength of static analysis, because certain multi-threading problems are almost
impossible to reproduce. Software development may even reach a stage where writing
multi-threaded software would be impossible without the help of verification tools.

For now, the modeling still has to be improved a lot. Some extensions are even
rather straightforward (e.g. shared read scenarios), so it is rather surprising that they
have not been implemented yet.

One crucial question for a static checker is whether it should work on (possibly
instrumented) object code or source code. Byte code has a simpler structure and fewer
possible commands, which makes it easier to translate into a model [42]; source code,
on the other hand, allows for an easy inclusion of annotations.

Usage

A conservative static analyzer could be an excellent code review tool. Right now, elim-
inating false positives still requires a lot of human intervention. Refining the analyzers
will certainly cut down on false positives. Once analyzers have reached a level where
usually not more than one warning per class file is displayed (and that warning is easy
enough to verify, maybe with the aid of graphical tools), it can even be included in the
standard development tools that are used – maybe as a stage after compilation?

An automated use is still problematic. As non-trivial checks will likely always
produce a few spurious warnings, a mechanism has to be in place to mark those as
“safe”. Jlint already has on option (-history) to eliminate warnings it has printed
before. But what makes it certain that the warning is not justified after the code has
changed? Possibly, storing the full context of the warning can help to avoid a scenario
where a warning is suppressed even though a fault was introduced by a code change.

It is also possible that powerful static checkers that require more information (via
annotations or templates) will be applied to algorithmically complex subsets of soft-
ware packages, while simple and fast checkers perform more coarse checks on entire
packages. For a widespread usage, both kinds of tools still have to become easier
to use. Especially the verification of a warning has to be made simpler, maybe with
improved code inspection tools.

6.3.3 Combination of both approaches

Both static and dynamic analyzers usually require extra information, e.g. source code
annotations (assertions) or templates that define properties across several files. It is

58 CHAPTER 6. FUTURE WORK

desirable that a common denominator is found across tools of both domains, so one
annotation could be verified both statically and dynamically, by two different tools.

When automatic model generation becomes more sophisticated, it may even be
possible that a static analyzer or a modeling tool instruments the code for a dynamic
checker. For example, a static analyzer could suppress assertions and other checks
where the correctness of a property can be proved; where this is not possible (because
the dynamic state cannot be predicted), it could insert extra code to verify that property.

6.4 Summary

Dynamic checking for multi-threading problems can be successful, but no implemen-
tation that is suitable for Java is available yet. Moreover, dynamic checking still suffers
from a high run time overhead.

Currently available static checkers could be much more useful by including more
rules in the model that is verified. Centrally to such improved checks are common
optimizations in software, such as shared reading without locking.

Jlint has shown that the usefulness of a static checker also depends on its architec-
ture, not only on its algorithms. Some design guidelines have been given about how
a more flexible static checker could be written. These guidelines are a result of the
insights gained when extending Jlint.

Finally, some ideas about possible directions in both areas were outlined. Both
static and extended dynamic checkers have a largely untapped potential for checking
multi-threading problems. It can be expected that much work will be done in these
areas in the near future.

Chapter 7

Conclusions

Multi-threaded programming poses a new challenge: the behavior of multi-threaded
programs is non-deterministic, because the thread scheduler cannot be controlled by
the application. This puts severe limitations on classical regression testing: even for the
same test case, the result cannot always be reproduced. Two promising new approaches
are extended dynamic checking and static checking. The former technique employs
new ways of overcoming multi-threading problems; the latter analyzes a program at
compile-time.

Extended dynamic checkers can either explore the state space of all possible threads
or keep track of the program history in order to analyze the full capability of a multi-
threaded program. The latter approach proved more practical, although there is no tool
available yet that efficiently performs such checks for Java programs.

Static checkers can be divided into (usually simpler) model checkers and more
complex theorem provers. The former, despite their limitations, have proved to be
almost as effective as the latter, especially in the area of multi-threading problems. As
the technologies are merging, the distinction becomes increasingly difficult. Any static
checker which is available today still needs further work.

Because Jlint is fast, easy to use, and well applicable to large scale projects, the
decision was made to extend its applicability to include synchronized blocks. As
statistical analyses showed, this was a significant improvement and allowed Jlint to
check a larger program base effectively. During the extensions, it was also seen that a
clean architecture is as important for a good static checker as good algorithms are.

The extended Jlint was applied to Trilogy’s source code and a few other software
packages. It discovered two multi-threading faults and ten other faults, mainly potential
null pointer references. Many multi-threading checks could be more useful with more
refined static analyzers. Even at its current stage, Jlint can already be a very useful tool
for finding faults early or for preparing a code review.

In the last chapter, some ideas for future extensions of Jlint and other static check-
ers were presented. Both static and dynamic checkers still have a largely untapped
potential, especially in the area of multi-threading problems.

59

Appendix A

Source code analysis

This chapter lists the results of all source code analyses. First, a short description of the
tools which were developed for this specific task is given; then, the results of applying
these tools to various source code bases are shown.

The sources have been chosen from various domains, in order to ensure a good cov-
erage of different types of programs. In Trilogy’s packages, the complexities lie in the
algorithms and I/O; in the CORBA and concurrency packages, I/O and synchronization
issues are dominant.

LOC synch. statements synch./KLOC
Trilogy 284875 487 1.710
Java 290428 1156 3.980
Javax 245700 217 0.883
CORBA 21180 56 2.644
Concurrency 23782 531 22.328
ETHZ DW 24649 147 5.964
Total 890614 2594 2.913

Table A.1: Overview about each package.

Table A.1 shows an overview about each analyzed package. As a first, simple
metric for the “parallelism” present in the packages, the number of synchronized
statements per thousand lines of code (KLOC) is shown. As comments and code layout
(e.g. number of empty lines) may slightly distort the statistics, the numbers have to be
taken as an approximate measure. Nevertheless, due to the large code size, they are
certainly comparable, and there is no doubt that the concurrency package is, due to its
very nature, the most complex one when it comes to parallelism.

More about the different cases of synchronization that were investigated can be
found in Section 3.5 on page 26.

A.1 Analysis tools

Since no existing tools analyze parallelism in the way that was needed for this project,
a customized suite of tools, consisting of five shell scripts and one Perl script, were
written.

60

A.2. TRILOGY’S SOURCE CODE 61

The first script, source-stats.sh, is a stand-alone script that gives an overview
of the package. It analyzes all .java files in the local directory tree. Because the
“textutils” proved, due to their context-insensitive nature, to be slightly inadequate for
removing all C style comments from the Java sources, the C preprocessor cpp was
used for that task. While this adds some overhead to the script, it ensures a correct
removal of any comments. The rest of the script is mainly a construct of nested grep
and sed commands. All in all, several hundred files and processes are created and
destroyed during execution of this script. However, due to the efficient file caching and
process creation mechanisms in Linux, the script still runs within a few seconds on a
fast computer, eliminating the need for any optimizations.

For a closer analysis of synchronized blocks, variable-type.pl was created. It
parses any Java source file, removing comments and analyzing the block structure.
Whenever it encounters, for the current file, a given variable within a synchronized
block, it prints out what type of variable that variable is. For a distinction of the dif-
ferent cases and their relevance, see section 3.5. If the variable is not declared at that
time or further down in the file, it recursively parses all superclass files, searching the
directories in the CLASSPATH environment variable. For class and instance variables,
the program also counts the number of assignments to that variable in the current file
(though not recursively in the superclasses).

Initially, the Perl script was much simpler and had several shortcomings (e.g. it
could not parse variable declarations occurring after the synchronized blocks and did
not work recursively on superclasses). The elegance of the script has definitely suffered
under all the extensions of the ten revisions made so far, but since the script will not be
needed for later work, it was not rewritten.

Because variable-type.pl has to be called once for each shared resource and
each source file, two shell scripts, analyze-file.sh and analyze-package.sh, per-
form the necessary preprocessing on a file or directory level. The latter script writes its
output to <directory name>.details, a file that, while being human readable, still
contains too much information to be of direct use. Two more scripts, total.sh and
total-of-a-kind.sh, parse that output file and give a total count of all variable types
of each category.

Additionally to these analysis tools, the following shell script was sometimes used
to generate a call graph such as in figure 4.1 on page 37 (Jlint has to be compiled with
-DDUMP_EDGES):

echo "digraph lockgraph {"; jlint *.class | grep ^Call | \
sed ’s/Call graph edge //’ | sed ’s/([^)]*)//g’ | \
sed ’s/\(.*\) -> \(.*\)/"\1" -> "\2"/’; echo "}"

The output of the script is the input for graphviz [25, 54].

A.2 Trilogy’s source code

A.2.1 Introduction

Because Trilogy’s sources which were analyzed did not consist of one, monolithic
package, it warrants a breakdown into its modules. Table A.4 shows a list of all the
seven packages (denoted by the names that are used in the source repository). De-
spite the variations between the different packages, only the diagrams for the totals are
shown. Indeed, only two of the smallest packages significantly deviate from the others
in complexity.

62 APPENDIX A. SOURCE CODE ANALYSIS

LOC synch. statements synch./KLOC
catalogsvc 5661 5 0.883
ffcaf 46994 161 3.426
hec 23947 12 0.501
sbjni 19031 32 1.681
scbbjava 129327 165 1.276
tce2 31242 36 1.152
trilogyice 28673 76 2.651
Total 284875 487 1.710

Table A.2: Overview of Trilogy’s source code.

A.2.2 Description of analyzed packages

This is a very short description of the analyzed packages, and is by no means complete
or comprehensive. It may help the reader to see in which areas the problems lie when
it comes to concurrency.

MCC catalog (catalogsvc)

This is a wrapper for the “Trilogy Classification Engine” (tce):

“The Classification Service provides remote access to the TCE in the
Multi Channel Commerce framework. It provides lightweight versions of
its classifiers which understand how to talk to the service. Using these
classifiers, TCE may be used remotely in a manner indistinguishable from
local access. Also contains Modules, Controls, etc.”

MCC Core (ffcaf)

The MCC Core handles the following functions:

� wrappers, load balancing and failover of remote services (CORBA/RMI)

� XML/JNDI configuration and tools

� module manager and module event handling

� cache semaphores for the registry service (pause/unpause services, cache flush-
ing)

� web site finite state machine code, custom TWC dispatcher, custom TWC beans

� ACL abstraction layer for UserACL service(s)

Cerium (hec)

This is a re-implementation of SalesBuilder in Java, which was originally written in
C++. Its core is an engine that allows configuration modeling to be implemented in
Java. As such, the program does not use a lot of multi-threading.

A.2. TRILOGY’S SOURCE CODE 63

SalesBuilder (sbjni)

This package is a Java wrapper around the SalesBuilder, Checker, and Pricer engines.
These engines, when used together, can help a company to track sales, check and define
price structures, and update them based on sales. Out of this package, the LogPlayer
was analyzed. It can read a log file and recreate the scenario that lead to such log
entries. For this purpose, it starts and controls other applications as needed.

Java backbone (scbbjava)

This is a Java-based object-oriented abstraction layer for relational DBs. As such, it
also manages sessions to the DBs.

Trilogy classification engine (tce2)

This is a generalized classification engine for storage and retrieval of information.

“The engine . . . understands many different kinds of "classifiers" used
to organize information. The most common classifiers describe various
characteristics of data items, e.g. "Color", "Category", "Price", "Name".
The engine facilitates maintaining, searching, and browsing these classi-
fiers. The new engine is schema independent. A classification ’schema’
describes how the data is organized in the database, i.e. where the clas-
sifiers are. Schema independence greatly increases the flexibility of the
engine.”

Trilogy Insurance Calculation Engine (trilogyice)

“Trilogy’s Insurance Calculation Engine allows insurers to create rat-
ing and automated underwriting models, and compile them to stand-alone
Java classes. These Java classes can be used to calculate quotes and un-
derwriting answers.”

A.2.3 Overview

blocks

methods this.getClass()

classes

500

0

250

instancesnon−this

this

Figure A.1: Breakdown of the usage of synchronized statements in Trilogy’s code.

64 APPENDIX A. SOURCE CODE ANALYSIS

487 synchronized statements
in 156 files

265 synchronized methods
in 96 files

222 synchronized blocks
in 79 files

9 synch. (this.getClass())
in 5 files

51 synch. (this)
in 18 files

162 synch. (non-this[.getClass()])
in 66 files (on 77 unique resources)

21 synchronizations on classes
(8 unique classes)

141 synchronizations on instances
(69 unique instances)

Figure A.2: Statistics of the usage of synchronized statements in Trilogy’s code.

Figures A.1 and A.2 show the same result in two different views. From the 487
synchronized statements in Trilogy’s code, the majority occurs as synchronized
methods. The number of synchronized blocks is almost as big. When breaking
down the latter number, a small, but still significant part is taken up by this and
this.getClass(), locks on the current instance and the current class, respectively.
However, most cases are more complex than that, involving a lock on a variable other
than this. For these cases, the ratio of locks on entire classes (rather than instances) is
about the same.

26

on a class var.

67

on an instance var.

3

on an inherited field

32

on a local variable

8

on a fn. parameter

5 on a member of another obj.

Figure A.3: Types of variables used in synchronized blocks in Trilogy’s code.

Figure A.3 shows an overview of the types of variable that holds a lock in a synchronized(lock)
statement. As one can see, the vast majority are class or instance variables (which are
only initialized once as a shared resource and then used throughout the program; this
is not shown in the diagrams).

Table A.3 gives the numbers per module, where inherited variables were counted
towards instance variables. As one can see, the usage of synchronized blocks varies
quite a lot between different modules.

The results from the previous tables and figures are condensed in figure A.4. The
synchronizations on class or instance variables, and the “other cases” represent the
synchronized blocks shown in table A.3.

A.2. TRILOGY’S SOURCE CODE 65

class instance local fn. other total
var. variables var. param. cases

catalogsvc - 1 4 - - 5
ffcaf 9 38 5 6 1 59
hec - 3 - - - 3
sbjni - 11 2 1 - 14
scbbjava 17 17 9 1 4 48
tce2 - - 12 - - 12
trilogyice - - - - - 0
Total 26 70 32 8 5 141
100.00% 18.44% 49.65% 22.70% 5.65% 3.55%

Table A.3: Per module usage of synchronized(non-this) blocks in Trilogy’s code.

265

synchronized method

51

on this 93

on a class/instance var.

30

on a class

48
other cases

Figure A.4: Overall usage of synchronized statements in Trilogy’s code.

66 APPENDIX A. SOURCE CODE ANALYSIS

A.3 Built-in Java packages

As in the previous section, table A.4 gives an overview about the source code of the
built-in Java classes. The variations between the packages is surprisingly big; however,
the numbers have to be taken with caution, since only the actual .java source files, but
no native implementations, have been analyzed.

LOC synch. statements synch./KLOC
applet 761 0 0.000
awt 114431 441 3.854
beans 9461 106 11.204
io 23489 145 6.173
lang 29307 100 3.412
math 5325 1 0.188
net 11292 68 6.022
rmi 7667 26 3.391
security 17892 31 1.733
sql 10940 12 1.097
text 23602 17 0.720
util 36261 209 5.764
Total 290428 1156 3.980

Table A.4: Overview of the source code of the built-in Java packages.

The following figures are equivalent to the ones from the previous section. A sur-
prising difference is the amount of inherited fields used: it is almost as high as the
number of “ordinary” instance variables. This greatly increases the dependency be-
tween a class and its superclass. In these cases, both classes are developed by the same
team, so this should not be a problem.

1156 synchronized statements
in 187 files

614 synchronized methods
in 135 files

542 synchronized blocks
in 104 files

20 synch. (this.getClass())
in 20 files

90 synch. (this)
in 29 files

432 synch. (non-this[.getClass()])
in 91 files (on 115 unique resources)

12 synchronizations on classes
(8 unique classes)

420 synchronizations on instances
(107 unique instances)

Figure A.5: Statistics of the usage of synchronized statements in the built-in Java
packages.

In table A.5, inherited fields are listed separately, unlike in the previous section.
Also, the “other cases” encompasses fields of other objects and (in the rmi package)
native fields.

A.3. BUILT-IN JAVA PACKAGES 67

43
on a class var.

99

on an instance var.

73

on an inherited field

146

on a local var.

39

on a fn. parameter

14 on a member of another obj.
6 on a native var.

Figure A.6: Types of variables used in synchronized blocks in the Java packages.

class instance inherited local fn. other total
var. variables fields var. param. cases

applet - - - - - - 0
awt 3 8 - 134 1 - 146
beans - 31 6 3 2 11 53
io 2 3 67 - 3 - 75
lang 19 6 - 6 10 1 42
math - - - - - - 0
net 7 1 - 1 3 - 12
rmi 2 - - 1 - 6 9
security - 3 - - 2 - 5
sql - - - - - - 0
text - 2 - - - - 2
util 10 45 - 1 18 2 76
Total 43 99 73 146 39 20 420
% 10.24% 23.57% 17.38% 34.76% 9.29% 4.76%

Table A.5: Per module usage of synchronized(non-this) blocks in the Java pack-
ages.

614

synchronized method

90

on this 212

on a class/instance var.

32

on a class

208

other cases

Figure A.7: Overall usage of synchronized statements in the built-in Java packages.
The blue and grey pie slices represent the synchronized blocks shown in table A.5.

68 APPENDIX A. SOURCE CODE ANALYSIS

A.4 Other packages

The other packages are monolithic or small enough, so they are not broken down into
their components.

The javax packages include accessibility, naming, and swing. accessibility
has no synchronized statements, while naming only has four; therefore they were not
treated separately. javax encompasses 617 files with 245700 lines of code.

The CORBA and ETHZ data warehousing package were both comparably small
in size and (parallel) complexity; however, the Concurrency package [23] was surpris-
ingly complex.

217 synchronized statements
in 51 files

130 synchronized methods
in 37 files

87 synchronized blocks
in 29 files

33 synch. (this)
in 12 files

54 synch. (non-this[.getClass()])
in 20 files (on 118 unique resources)

54 synchronizations on instances
(18 unique instances)

Figure A.8: Statistics of the usage of synchronized statements in the Javax (Swing)
packages.

130

synchronized method

33

on this

37

on a class/instance var.

18
other cases

Figure A.9: Overall usage of synchronized statements in the javax packages. There
were 24 class and 14 instance variables. The "other cases" include 16 local variables
and two native fields.

A.4. OTHER PACKAGES 69

50
synchronized methods

6
on a class

Figure A.10: Statistics of the usage of synchronized statements in the
OMG (CORBA) packages. These Java CORBA classes (org.omg.CORBA.* and
org.omg.CosNaming.*) were a simpler case; almost all synchronizations are done
with synchronized methods. The total amount of code were 21180 lines in 247 files.

531 synchronized statements
in 61 files

238 synchronized methods
in 49 files

293 synchronized blocks
in 40 files

35 synch. (this)
in 14 files

258 synch. (non-this[.getClass()])
in 28 files (on 26 unique resources)

258 synchronizations on instances
(26 unique instances)

Figure A.11: Statistics of the usage of synchronized statements in the Concurrency
package [23]. The total amount of code were 23782 lines in 104 files.

238

synchronized method

35on this

229

on a class/instance var.

29 other cases

Figure A.12: Overall usage of synchronized statements in the Concurrency package
[23]. The blue slice includes 3 class and 31 instance variables as well as 195 inherited
fields. The other cases are 1 local variable, 8 function parameters and 20 members of
other objects.

70 APPENDIX A. SOURCE CODE ANALYSIS

54

synchronized method

11

on a class/instance var.

Figure A.13: Overall usage of synchronized statements in the ETHZ data warehous-
ing package [24]. The total amount of code were 24649 lines in 147 files. There were
7 class and 4 instance variables.

A.5 Summary

Even though some variations between different packages were present – especially
in the number of synchronized statements per LOC – the overall picture is quite
homogeneous.

Category # %

synchronized methods 1351 53.76 %
synchronized(this) 209 8.32 %
synchronizations on current class 68 2.71 %
synchronizations on other classes/instances 582 23.16 %
other cases 303 12.06 %
Total 2513 100.00 %

Table A.6: Total usage of synchronized statements.

A.5. SUMMARY 71

1351

synchronized method

209

on this 582

on a class/instance var.

68

on a class

303

other cases

Figure A.14: Total usage of synchronized statements in all analyzed packages. A
total of about 900000 LOC was analyzed.

Appendix B

Existing tools

B.1 Dynamic checkers

B.1.1 MaC

Purpose: Monitor running systems against a formal specification.

Producer: Real-time systems group (RTG) at the University of Pennsylvania.

Technology: Automatically generated run time checker.

Overview: MaC stands for “Monitoring and Checking”. It combines a high-level re-
quirement specification and a low-level monitoring script that verifies the given
requirements at source code level. An Instrumentor generates a run time checker
based on the given data. This checker verifies the given properties after each
method call. This process is easier to use but less general (in terms of schedules
covered) and efficient than static checking.
The requirements are expressed in an extended form of linear temporal logic; the
monitoring script is written in a simple event definition language. Optionally, ex-
tra actions for exceptional conditions can be given via a steering script [27, 28].
MaC does not yet have a framework for systematically testing multi-threaded
programs, but it could be combined with a special JVM in order to achieve this.

Availability: MaC is available for research purposes, including source code. It is writ-
ten in Java and platform independent. It requires the JTrek library from Compaq
(http://www.digital.com/java/download/jtrek/), which is available un-
der a special license.

Usage: MaC has been applied to a couple of small test programs [27].

URL: http://www.cis.upenn.edu/~rtg/mac/

B.1.2 Rivet

Purpose: Create advanced debugging and analysis tools.

Producer: Software Design Group at the MIT.

72

B.1. DYNAMIC CHECKERS 73

Technologies: Custom Java Virtual Machine (JVM); systematic scheduling algorithm
for dynamic testing.

Overview: Rivet is a platform for sophisticated Java debugging and testing tools. Its
goal is to expose the internals of the virtual machine in an structured, well-
documented way in order to allow the construction of tools based on that in-
formation. So far, the initial suite of tools contains a bi-directional debugger (not
yet fully implemented) and a tester for multi-threaded programs.
Rivet is a partial JVM running on top of another virtual machine. Therefore, it
only implements the key components needed for systematic testing, such as the
thread scheduler.
Deterministic replay, which allows the virtual machine to undo a step in its ex-
ecution, was planned as a future extension. This would not only allow more
efficient testing, but also allow the creation of a new, very powerful debugger. A
couple of challenges, such as efficient representation of classes and instances in
the virtual machine, still had to be overcome. Performance problems were likely
a reason why development on Rivet was discontinued.

Availability: The professor who managed the project has left the MIT on spring 1999.
Work ceased on both Rivet and the ExitBlock systematic testing algorithm.

Usage: Rivet has been used on a couple of test examples and small programs, but did
not scale to large software [29].

URL: http://sdg.lcs.mit.edu/rivet.html

B.1.3 Verisoft

Purpose: Systematically test multi-threaded applications written in any programming
language.

Producer: Bell Laboratories, Lucent Technologies; main author: Patrice Godefroid.

Technology: Systematic state space exploration (in dynamic checking) using a new
search algorithm.

Overview: Verisoft is a dynamic checker that allows the programmer to systemati-
cally explore the state space (state of all variables and interleavings of threads)
of a program. While the checker does not require the program source, having
the source available allows the use of assertion statements. The programmer can
also use a special non-deterministic operation in the program source to model the
environment to be simulated. The thread scheduling represents the other source
of non-determinism, which is not controllable by the programmer.
Verisoft checks programs dynamically for deadlocks, divergences (a process
stops communicating), lifelocks and assertion violations. It uses a new search
algorithm (a refined incremental depth-first search) to guarantee coverage up to
a certain level while using sophisticated state space pruning techniques to keep
the search manageable. By using a state-less search algorithm (i.e. no caching
of previously visited states), a much larger amount of code can be checked. It
still has a rather long run time for larger programs [30, 31].

Availability: Verisoft is available in binary format for research purposes (under a spe-
cial license).

74 APPENDIX B. EXISTING TOOLS

Usage: Verisoft has been successfully applied to a complex small C program (2500
LOC), but no larger projects are documented [31].

URL: http://www1.bell-labs.com/project/verisoft/

B.1.4 VisualThreads (Eraser)

Purpose: Detect concurrency errors in multi-threaded programs.

Producer: Compaq Inc.

Technologies: Dynamic monitoring techniques, lock set algorithm for detecting race
conditions.

Overview: Eraser checks the correctness of locking schemes in multi-threaded pro-
grams. It ensures that access to shared resources is always guarded by certain
locking disciplines. The goal of such a policy is to ensure that no race conditions
can occur and that read-write locks operate in a correct manner.
Eraser works by dynamically monitoring the locking of all shared variables. It
constantly refines the lock sets, and warns when the lock set becomes empty.
Various special cases, such as initialization (where a resource is not available
to other threads), read-shared and read-write locks are considered if the source
code is properly annotated. These annotations are mainly used for suppressing
false alarms [32].
The Eraser algorithm has been successfully used on complex real-life programs,
such as the AltaVista indexing engine, where it found one or two race conditions
in four sample programs.

Availability: The Eraser algorithm has been implemented in “VisualThreads”. Visu-
alThreads is commercially available for OpenVMS and Tru64 Unix Alpha sys-
tems, where it is part of the development tools. Java is supported by monitoring
the POSIX calls of the Java Virtual Machine.

Usage: VisualThreads is available as part of the development tools; in which projects
it is actually used is unknown. Before it was a commercial tool, it has been used
on an experimental OS kernel, the Altavista indexing engine, and a couple of
other projects, of about 25000 LOC each [32].

URL: http://www5.compaq.com/products/software/visualthreads/

B.2 The Spin model checker

Purpose: Static model checker, back-end for other tools.

Producer: Bell Labs (now Lucent Technologies); main author: Gerard J. Holzmann.

Technologies: Explicit state model checking, partial order reduction.

Overview: Spin is a software verification tool that uses a high-level language to spec-
ify systems. The language is called PROMELA (PROcess MEta LAnguage).
Its development has started at Bell Labs in 1980. Spin has been used to trace
logical design errors in distributed systems design, such as operating systems,

B.3. STATIC CHECKERS 75

data communications protocols, switching systems, concurrent algorithms. It
can also serve, in conjunction with other tools, to verify the correctness of an
abstract representation of source code.
At the core of Spin is a linear temporal logic (LTL) checker. However, it also
supports verification of safety and liveness properties not expressible in LTL.
It accepts, besides Promela and LTL, also so-called Büchi automata or never
claims. Promela supports a large variety of high-level constructs such as pro-
cesses, shared memory, and (buffered or unbuffered) message queues [33].

Availability: Spin is available as Open Source software. Spin is written in C, and can
be compiled on any standard ANSI C platform such as Linux, Unix and Windows
9x/NT.

Usage: Several projects (such as Bandera, FeaVer or JPF) are ongoing which use Spin
as their back-end model checker.

URL: http://netlib.bell-labs.com/netlib/spin/whatispin.html

B.3 Static checkers

B.3.1 Bandera

Purpose: Build a model suitable for model checkers from Java source code.

Producer: Laboratory for Specification, Analysis, and Transformation of Software in
the CIS Department at Kansas State University.

Technologies: Program slicing, program abstraction, static model checking; two-way
conversion between abstraction levels.

Overview: Bandera tries to bridge the gap between software source code and an ab-
stract representation of it. A special annotation language allows to express as-
sertions and temporal or quantified properties in the source code. Predicate def-
initions for each method are used in property specifications which contain the
program properties (invariants or sequences of states through which the program
always has to go).
Using program analysis (slicing), the first stage of Bandera generates a simpli-
fied version of the program, containing only the statements of interest for the
correctness of the program. This can drastically cut down the complexity of the
model that is generated from the program.
The second stage reduces the model size further via data abstraction. It generates
an intermediate representation of a finite-state model in an intermediate format.
This format is then translated into the specification language of a model checker
of choice; so far, SPIN [1] is supported. Translators for the Symbolic Model Ver-
ifier (SMV) [20], developed in the Carnegie Mellon University, and Stanford’s
forthcoming SAL model checker [21] are under construction.[35]
A newer component is the counter-example generator that checks faults found
in the abstract model for their validity in the actual program, and reports where
in the source code the fault was found[34].

Availability: Originally planned for summer 2000, the first beta version has been re-
leased on March 8, 2001, under the GPL.

76 APPENDIX B. EXISTING TOOLS

Usage: Bandera has been applied, in conjunction with JPF, to a couple of small pro-
grams, including Doug Lea’s concurrency package [34].

URL: http://www.cis.ksu.edu/santos/bandera/

B.3.2 ESC/Java

Purpose: Detect common programming errors at compile-time.

Producer: Compaq Systems Research Center

Technologies: Generator of background predicates and verification conditions, Sim-
plify theorem prover.

Overview: The “Extended Static Checker” for Java has been developed by Digital
Equipment Inc. (now part of Compaq). The first version has been written for
checking Modula-3 programs. ESC/Java statically checks a program for null
reference errors, array bounds errors, potentially incorrect type casts and race
conditions.
ESC/Java requires annotations in the source code in its own annotation language.
In an internal study, the annotation overhead in the source code was about 13.6%
[38]. However, less scrupulous annotations can be made, ignoring certain types
of faults.
The checker first generates type-specific background predicates to encode data
types and type relations for each class and interface. Then, each routine is trans-
lated into a verification condition. As an intermediate step, a sequence of com-
mands similar to Dijkstra’s guarded commands is produced [37]. The Simplify
theorem prover then tries to disprove each one of these verification conditions. If
it succeeds, the front end transforms the counter-example context into a warning
and (optionally) a counter-example [36].

Availability: The checker has recently been released and is freely available for re-
search and educational use. A binary version can be downloaded for Alpha Unix,
Solaris, Linux and Windows 9x/NT. The front end has been written in Java while
the theorem prover Simplify is written in Modula-3. – A Modula-3 front end is
also available, but for Alpha Unix and Intel Windows 9x/NT only.

Usage: ESC/Modula has successfully found fault in several small projects, being to-
tally 20 K LOC in size [38]. There are no numbers available yet for ESC/Java.

URL: http://research.compaq.com/SRC/esc/

B.3.3 FeaVer

Purpose: Verify program properties extracted from a test harness.

Producer: Bell Labs Computing and Mathematical Sciences Research Division; main
author: Gerard J. Holzmann

Technologies: Model extractor for special C source files, SPIN model checker, error
trace generator.

B.3. STATIC CHECKERS 77

Overview: FeaVer’s ultimate goal is a mechanical extraction of a model from the
source of software applications. It uses a structured test program (the test har-
ness) and a description of program features in order to find violations of such
rules. The tool is very small and (so far) only works on event-driven programs,
yet it is already quite powerful at finding faults that are very hard to find through
conventional testing.
Besides a test driver program, the user has to provide a lookup table or map,
which defines the relevant portions of the source statements to be checked. The
developer can start with a simple, coarse mapping and gradually refine it as faults
are removed or false warnings occur (the default mapping ignores the values of
expressions when evaluating possible execution paths). Together with a list of
properties (given as logic formulas, where a variety of default properties is al-
ready available), the FeaVer framework pre-processes the program source code
and produces a Promela (also see Section B.2) specification [39].

Availability: Development is still in its early stage, and the tool will not be released
for at least another year (i.e. not before 2002). FeaVer is written in C and only
supports C programs so far.

Usage: Only as a prototype within Bell Labs, for the PathStar call processing and
telephone switching software, which is certainly a very large and complex piece
of software.

URL: http://cm.bell-labs.com/cm/cs/who/gerard/abs.html

B.3.4 Flavers

Purpose: Answer verification queries about program properties during design and de-
bugging.

Producer: Laboratory for Advanced Software Engineering Research (LASER), Com-
puter Science Department at the University of Massachusetts Amherst.

Technologies: Data flow and control analysis, static finite state verification, incremen-
tal query evaluation.

Overview: Flavers uses data and control flow analysis to build a model of the program
to be checked. It then checks this model against verification queries. This also
works on concurrent systems. The tool allows to ensure that the software archi-
tecture meets the design requirements and consistency rules, such as sequences
of events, safety and liveness properties.
Flavers automatically guarantees the presence or absence of certain properties
while not requiring knowledge in formal methods. The user can also specify
additional properties once he is familiar with the system. Moreover, the Flavers
framework offers specialized algorithms for different development stages (re-
ferred to as “exploratory”, “fault-finding” and “maintenance” modes).
The INCA project is quite similar and uses Integer Programming in order to ver-
ify certain properties; however, that project has not yet come far enough to have
an automated translation from source code to linear inequalities, which are re-
quired by the theorem prover.
The Static Concurrency Analysis Research Project collects patterns of problems

78 APPENDIX B. EXISTING TOOLS

that frequently occur in multi-threaded programs, in order to facilitate the devel-
opment of future software tools [16].

Availability: An Ada and C++ version are implemented. The C++ version belongs
to the company MCCquEST and is not available; the Ada version has been de-
veloped by the university and is available upon request. A Java version is under
development, but still in its early stage and not yet ready for a release.

Usage: No numbers are available.

URL: http://laser.cs.umass.edu/tools/flavers.html

B.3.5 Jlint

Purpose: Semantic verifier detecting certain deadlocks, race conditions and a few
other faults.

Producer: Moscow State University, Research Computer Center; main author: Kon-
stantin Knizhnik.

Technology: Control flow/lock dependency analysis, specialized checks for other faults.

Overview: Jlint comes as two programs, a simple syntax verifier (AntiC) and a se-
mantic verifier (Jlint). The former checks for a few common potential syntax
errors. The latter is much more interesting, for it extracts information from (non-
annotated, normally compiled) Java class files and performs consistency and flow
analyses on them. Jlint is capable of dealing with missing debugging information
which some Java compilers cannot (yet) generate. It also allows a hierarchical
selection of the checks that should be performed.
The core algorithm checks Java class files for loops in the lock dependency
graph. This graph includes both static and dynamic methods. It also makes
sure the programs follow certain consistency rules when using the wait method
in Java. Race conditions are found by building the transitive closure of methods
which can be executed concurrently and the methods they call. Then, all fields
accessed by such methods which fulfill certain conditions are reported as possi-
ble race conditions in data access. Jlint is rather conservative at reporting errors,
since it does not allow annotations which could eliminate false positives.

Availability: Freely available; written in C and C++, and should work on any platform.

Usage: No other numbers are available, but Jlint has been applied successfully at Tril-
ogy to large scale software (several projects of several ten thousand LOC each).

URL: http://www.ispras.ru/~knizhnik/jlint/ReadMe.htm, http://artho.com/
jlint/

B.3.6 JPF

Purpose: Integrate model checking, analysis and testing.

Producer: Automated Software Engineering Group (ASE) at NASA; main author:
Klaus Havelund.

B.3. STATIC CHECKERS 79

Technologies: Slicing, abstraction; 1.0: Java to Promela translator; 2.0: special JVM
(MC-JVM) and model checker.

Overview: The “Java PathFinder” has been developed at the Automated Software En-
gineering (ASE) department at NASA. Currently, JPF can only check invariants
and deadlocks. Invariants are given as a Boolean Java method.
After an abstraction and a slicing stage, which both reduce the state space of the
program a lot, a depth-first search is performed on the program stages. A special
JVM, which allows to move forward and backward one state in the bytecode ex-
ecution, is used for this.
The first version was a translator from Java to Promela [40]. Special assertion
and error methods specify the properties to be checked. It has, however, only
supported a fairly restricted subset of Java. Because it was too difficult to extend
the program to support more Java constructs, a different approach has been taken
for the second version, which works directly on bytecode. It can therefore fully
support all Java features [42].

Availability: It is currently being checked by NASA’s legal department whether the
program can be made available to selected third parties or not.

Usage: JPF has been applied to the Remote Agent Spacecraft Controller (RAX), where
it found a deadlock, and the DEOS Avionics Operating System. After the slicing
stage, the largest package was 1443 LOC in size [41].

URL: http://ase.arc.nasa.gov/jpf/

B.3.7 LockLint

Purpose: Detect race conditions and deadlocks in C programs.

Producer: Sun Microsystems Inc.

Technology: Control flow analysis.

Overview: LockLint consists of two parts: A special mode in Sun’s C Compiler (in-
voked via a command line switch) and a program that analyzes the resulting
LockLint files. Assertions about a large variety of lock properties can be made
in the source code via macros, which are evaluated by the C compiler. These
include (possibly intended) side-effects of functions, properties that should hold
upon entry of a function or when accessing a variable, and consistent lock usage.
When LockLint is run, it spawns its own shell, which allows the user to enter
verification properties or LockLint commands interactively or run them via a
shell script. Additional annotations in the C sources are not required, but recom-
mended since the checker cannot make all assumptions correctly.
LockLint tries to guess the set of possible values for function pointers and global
variables; again, manual overrides (in the LockLint shell) are possible to correct
wrong assumptions.

Availability: Commercially available as a part of the Forte (formerly SunWorkshop)
compiler suite for C programs.

Usage: The Forte tools are widely used in the industry, but no numbers are available
about the projects that have used LockLint.

URL: http://www.sun.com/forte/c/

80 APPENDIX B. EXISTING TOOLS

B.3.8 MC

Purpose: Build specific compiler extensions to check, optimize and transform code.

Producer: Computer Systems Laboratory, Stanford University.

Technology: Static analysis (by an extensible compiler).

Overview: “Meta-level Compilation” (MC) is a project that verifies whether a pro-
gram violates certain consistency patterns. The user can combine simple rule
templates and apply them to specific rules such as “system libraries must check
user pointers for validity before using them”. By setting up a few such rules, one
can effectively check a program against a large range of errors. The rules are
expressed in a high-level state-machine language.
After building a control-flow and data-flow graph, MC checks that model against
the specified correctness properties. Even though a basic backtracking algorithm
is used for the state space search, an effective caching algorithm avoids an expo-
nential run time behavior in practical cases [43].

Availability: It has not been decided yet whether MC will ever be publicly released.

Usage: MC has been successfully used in searching the Linux and BSD kernels for
faults, specifically for incorrect resource management and interrupt disabling/enabling
schemes [43].

URL: http://hands.stanford.edu/

B.3.9 SLAM

Purpose: Check that software satisfies critical behavioral properties.

Producer: Software Productivity Tools Research group, Microsoft Inc.

Technologies: Boolean programs, parametrized verification of models for multi-threaded
software.

Overview: SLAM (Software, Analysis, Languages, Model Checking) is a suite of
programs that is being developed at the Microsoft Software Tools research group.
One of the main challenges is the automation of the abstraction of source code.
The focus of the project is the checking of invariants and temporal properties. For
the latter, a new formal model for multi-threaded program is used: the LGFSM,
an extended finite state machine.
At the core of the tools is a model checker for Boolean Programs (programs that
only use Boolean variables). This (strong) abstraction allows to check invariants
and termination of programs, a problem which is in general undecidable [44].
So far, SLAM only works on C (partially on C++) programs, verifying the correct
behavior of drivers and system libraries. It has been successfully used for internal
projects.

Availability: SLAM will be made available for research. The roll out for the SLAM
tools is planned as follows:

� bebop (model checker) will be released in early 2001
� c2bp (abstractor) will be released mid-year, 2001

B.4. OTHER TOOLS 81

� other tools to follow.

Usage: So far, SLAM has been used internally to model a multi-threaded memory
manager [44].

URL: http://research.microsoft.com/slam/

B.4 Other tools

B.4.1 JML/LOOP

Purpose: Behavioral interface specification language to specify properties of Java
modules.

Producer: Department of Computer Science, Iowa State University; Computer Sci-
ence Department Nijmegen (Holland)

Technologies: LOOP translator, PVS [19] or Isabelle proof tool [18].

Overview: The “Java Modeling Language” is an interface specification language de-
scribing the behavior of classes. The intent is to make it safe to write subclasses
to existing classes, given only access to the object code and a specification writ-
ten in JML.
This project works in cooperation with ESC/Java; both specification languages
are merging, but JML’s goal is focused on “design by contract” [45] and behavior
specification, while ESC/Java works on a lower level. The development of the
JML tools is still in an early stage, but an automated translation of JML spec-
ifications into verification conditions (using LOOP: Logic of Object-Oriented
Programming) is being developed. Also, extensions regarding concurrency are
being explored. While the syntax for temporal statements in JML already ex-
ists, the work in this area is still experimental. (ESC/Java offers other temporal
constructs, which operate on a lower level, such as lock sets.)

Availability: JML is available (including source code) under the GPL. The current
version, written in Java, features a type checker and a run time assertion checker
for Java programs and JML annotations.

Usage: As the entire tool suite has not been developed yet, no reports about their usage
are available.

URL: http://www.cs.iastate.edu/~leavens/JML.html

Appendix C

Multi-threading in Java

C.1 Threads

Java includes multi-threading in the language itself, which makes it much easier to
use. This appendix only describes those aspects of multi-threading that are relevant to
static checking and this thesis. For more information about multi-threading, see [48,
pp. 149–152] or [47].

The java.lang.Thread class allows the creation and control of several threads.
These threads share the address space of the virtual machine.1 It is possible to run dif-
ferent instances of threads, with their own data; however, all instances are (potentially)
accessible to all threads. For practical purposes, the programmer can assume that the
virtual machine runs on only one CPU, and each thread periodically receives a “time
slice” by the scheduler. Note that the official Java specification poses no requirement
for a fair scheduling among threads of the same priority. This emphasizes once more
that the programmer has to take any possible schedule into account.

C.2 Thread synchronization

C.2.1 Introduction

For ensuring the correctness of a multi-threaded program, thread synchronization is
crucial. The basic technique is to prevent two threads from accessing the same object
simultaneously. This is done via a lock on that object (or another object which repre-
sents the lock on that object – this technique is sometimes employed for primitive types
like integers, or for collections). While any one thread holds the lock, another thread
requesting it is blocked (suspended) until the first thread has released the lock.

There is only one way in Java to acquire a lock: the synchronized statement.
With synchronized(resource) { /* block */ }, the current thread blocks until
it is able to acquire a lock on resource. The lock is held until the entire block is
finished (either when the last statement is executed or the block is aborted by other
means, e.g. break or return statements, or exceptions.

1This is not quite correct, because the Java Virtual Machine performs some kind of “caching” for the
variables accessed by threads. This is, however, not relevant for this discussion. For more information about
this, see [50, Chapter 8].

82

C.2. THREAD SYNCHRONIZATION 83

A special case of synchronization is synchronized(this). This acquires a lock
on the current instance, which is often described as “making a block atomic”. This is
a common misconception. Indeed, the execution of that block is not atomic; holding
a lock on the current instance does not prevent a preemption of that thread by the
scheduler. The execution is, though, “atomic” on that instance – no two threads may
execute that block for the same object instance at the same time.

synchronized method() {
...

}

�

method() {
synchronized(this) {
...
}
}

Figure C.1: Synchronized(this) vs synchronized methods.

If a synchronized(this) block spans an entire method, synchronized methods
are commonly used instead. Such a method automatically acquires a lock on this
before its body is executed. After method execution, the lock is released. (If a lock is
held before, acquiring it again simply increases a counter within the virtual machine,
but has no other effect.)

Synchronizations may also be used on classes, where they have the effect of “lock-
ing out” all instances belonging to that class. Commonly, this used to synchronize on
the class of the current instance, but a synchronization on other classes is possible as
well.

Two other important synchronization primitives are wait and notify. If a thread
holds a lock on a resource, and has to wait for a certain condition to become true, it
should call resource.wait() inside a loop. This causes that thread to “sleep” (block)
until another thread calls resource.notify(), which “wakes up” any thread waiting
on resource.

Calling notify releases the lock, and causes the original (waiting) thread to re-
acquire it before resuming execution. Normally, that thread has to verify again whether
the condition it is waiting on now holds; hence wait is usually called inside a loop
rather than an if statement. How the latter can introduce subtle faults is illustrated in
example D.10.

If it cannot be guaranteed that any thread that has just been notified can actually
resume execution (i.e. the condition it is waiting on has become true), then notifyAll
needs to be used instead (see example D.11). This will “wake up” all threads waiting
on that resource (in random order). At least one of them has to be able to continue
execution; otherwise all waiting threads may end up stopped.

C.2.2 Usage

Preventing race conditions

Synchronization is crucial for preventing race conditions (incorrect concurrent access
of a shared resource). Whenever the access to a resource r has to be exclusive, the pro-
grammer has to ensure that each thread always holds a lock guarding r when it is used.
If L is the set of locks held at a certain time, the programmer has to ensure that a r is 1)
only read when a thread holds at least one lock in Lr and 2) only written when a thread
holds all locks in Lr [36]. Often, a synchronization on r itself is used for guaranteeing
non-concurrent access; more advanced locking schemes require additional locks.

84 APPENDIX C. MULTI-THREADING IN JAVA

It has to be noted that the current instance is “invisible” to other threads inside the
constructor (i.e. while the constructor is being executed; therefore the instance is also
invisible if the constructor calls other methods). This is because the current thread
does not hold a reference to that object yet; and it cannot share something it does not
possess. An exception to this rule are constructors which pass the this pointer to other
classes. This is very rare, though, and usually indicates a poor design.

Preventing deadlocks

By obtaining too many locks, the execution of each thread can be slowed down greatly,
because they spend a lot of time requesting locks. Even worse, incorrect locking
schemes can lead to a deadlock:

public void run() {
if (ab) {

synchronized (a) {
synchronized (b) {
}

}
} else {

synchronized (b) {
synchronized (a) {
}

}
}

}

Deadlock.run

Deadlock.a.<synch>

T1

Deadlock.b.<synch>

T2

T1 T2

Figure C.2: The deadlock in example D.1.

If thread T1 is holding a lock a and requests lock b, it will wait until that lock
becomes available. Assume another thread T2 already holds b and requests a; in this
case, we have a deadlock because both threads wait for an event that will never happen.
Figure C.2 shows the lock graph for this example. In this graph, there is a loop between
the two nodes Deadlock.a.<synch> and Deadlock.b.<synch>, which represent the
synchronized(a) and synchronized(b) statements, respectively.

The virtual machine has no built-in deadlock resolution, which would cause one of
the two threads to give up its lock. Therefore deadlock analysis is an integral part of
writing safe multi-threaded programs in Java.

C.3 Summary

This appendix gave a short introduction to the crucial features of multi-threaded pro-
gramming in Java. The synchronization is the core of the design of a multi-threaded
program. A lack of synchronization can lead to race condition, while an inconsistent
locking scheme may result in deadlocks.

Appendix D

Example listings

D.1 Selected programs

D.1.1 Deadlock

These examples contain some simple classes showing various variants of deadlocks.
The deadlocks are all intra-method deadlocks, using the synchronized(resource)
statement. This statement blocks the current thread until it can obtain a lock on the
object resource.1 All programs within this section were taken from the Rivet test-
suite [29]. The deadlocks exhibited are all easily detected by Rivet, yet may be hard to
detect for static checkers.

Deadlock

This is the simplest possible deadlock: two instances compete for resources a, b in the
opposite order, therefore forming a loop in the lock-acquisition hierarchy. For more
details about why a deadlock occurs here, see Appendix C.

Listing D.1 Deadlock: run method of two competing threads.
public void run() {

if (ab) {
synchronized (a) {

synchronized (b) {
}

}
} else {

synchronized (b) {
synchronized (a) {
}

}
}

}

1This is a simplification; actually, the current thread becomes runnable once the lock on resource is
available. If it is not running at that time, it might occur that another thread obtains the lock in the mean-
time. Therefore, thread starvation can still occur when only using the standard synchronized(resource)
mechanism in Java.

However, Java makes it fairly simple to implement more advanced resource sharing mechanisms such as
a queued locking [47, pp. 178 - 180].

85

86 APPENDIX D. EXAMPLE LISTINGS

Deadlock2

This is a slight variation of the Deadlock example. Here, the nested synchronized
blocks in the run method were replaced with calls to static synchronized methods of
the dummy classes LockA and LockB, which call in turn a static synchronized method
of the other class. This models the same intra-method locking scheme (within the run
method) on a method level.

Listing D.2 Deadlock2: Locking scheme from Deadlock on a method level.
public synchronized void run() {

if (ab) {
LockA.foo(); // recursively calls LockB.bar, obtaining lock on B

} else {
LockB.foo(); // recursively calls LockA.bar, obtaining lock on A

}
}

DeadlockWait

This example shows a deadlock when using wait and notify. The first thread obtains
locks a and b, then waits on b. The second thread then blocks trying to obtain lock a.

Listing D.3 DeadlockWait: run methof two competing threads. While the first thread
is waiting on b, the second thread never reaches the statement b.notify().

public void run() {
if (ab) {
synchronized (a) {

synchronized (b) {
try { // Java throws an exception when execution continues

b.wait();
} catch (InterruptedException i) { // continue execution

System.out.println(name+" was interrupted!");
}

}
}

} else {
synchronized (a) {
}
synchronized (b) {

b.notify();
}

}
}

DeadlockWait2

This is a slight variation of the DeadlockWait example. Here, the nested synchronized
blocks in the run method were replaced with a call to a synchronized methods of the
dummy classes LockA. That class is a singleton class, having only a single instance.2

The method which is called by run calls a method of singleton class LockB, shown in
Listing D.4.

2Static methods could not be used here because the wait and notify methods are not available to them.

D.1. SELECTED PROGRAMS 87

Depending on the value of a boolean variable, it either calls wait or notify on
itself. Since, at that stage, a lock on the only instance of LockA is still active, the
notify message never reaches its destination. This models the same intra-method
locking scheme (within the run method) on a method level and creates the same dead-
lock.

Listing D.4 DeadlockWait2: method foo() of class Lock B, which is called from a
synchronized method of class LockA.

class LockA {
public synchronized void foo(String name, boolean ab) {

LockB.getInstance().foo(name, ab);
}

}
class LockB {

public synchronized void foo(String name, boolean ab) {
if (ab) {

try { this.wait(); }
catch(InterruptedException e) { }

} else {
this.notify();

}
}

}

Deadlock3

This program demonstrates a simple cyclic deadlock with three threads competing for
locks a, b, and c.

Listing D.5 Deadlock3: run method of three competing threads.
public void run() {

if (order == 0) {
synchronized (a) {

synchronized (b) {
}

}
} else if (order == 1) {

synchronized (b) {
synchronized (c) {
}

}
} else {

synchronized (c) {
synchronized (a) {
}

}
}

}

D.1.2 SplitSync

This example is also taken from the Rivet test-suite [29]. It simulates a case where the
locking granularity is too low. The lock is released in between a calculation, and the

88 APPENDIX D. EXAMPLE LISTINGS

assumption is made that the value is unchanged in between. This programming mistake
leads to a race condition on the shared variable.

Listing D.6 Race condition: A lock is released in between a calculation.
public void run() {

int y;
synchronized (resource) {
y = resource.x;

}
synchronized (resource) {
if (resource.x != y) {

System.out.println("****** Assertion violation! *******");
System.exit(0);

}
resource.x = y + 1;
// System.out.println(name+" = "+x[0]);

}
}

D.1.3 Jlint test example

Classes A, B with cyclic locks (method calls)

Listing D.7 is taken from the jlint documentation. It shows two classes that call each
other’s synchronized methods in a way that a loop in the lock graph results.

Listing D.7 Jlint example: Loop in lock graph.
class A {

public synchronized void f1(B b) {
b.g1();
f1(b);
f2(b);

}
public void f2(B b) {
b.g2();

}
public static synchronized void f3() {
B.g3();

}
}
class B {

public static volatile A ap;
public static volatile B bp;
public synchronized void g1() {
bp.g1();

}
public synchronized void g2() {
ap.f1(bp);

}
public static synchronized void g3() {
g3();

}
}

D.1. SELECTED PROGRAMS 89

D.1.4 ESC/Java example

The ESC/Java manual contains one slightly bigger example (Listing D.8). It deals with
a pathological case where a part of a tree is rotated. Therefore, the static checking as-
sumes that the locking order is inconsistent; however, while it appears so syntactically,
the locking scheme is semantically correct, because the two locks have been swapped
in the tree structure. For more information, see the ESC/Java user manual [36].

As a result of this unusual behavior, the ESC/Java checker generates a spurious
warning about a non-existent deadlock and also misses a possible race condition if a
synchronization statement is left out in the second block.

D.1.5 Shared buffer (producer/consumer problem)

The first three versions of this implementation are taken from the Rivet test suite [29].
They show a working version where two common faults are introduced. These faults
were successfully detected by Rivet.

A shared buffer also models a data base wrapper pretty well. This is very interest-
ing, because such wrappers (or similar wrappers for a server-based service) are very
common in practice. Indeed, one of Trilogy’s packages (see Section A.2.2) performs
exactly this functionality: among other things, it handles a pool of connections to the
data base. Such a wrapper, running in several threads, offers connections to the data
base. The number of threads is certainly limited. The access to the data base is mod-
eled by the buffer; what is not modeled are dependencies (i.e. locks) between data base
transactions, which are in the data base layer.

Correct multi-threaded implementation

Listing D.9 shows the source code of the buffer class. The main method, where two
producers and one consumer are created and started, is omitted.

Broken implementation (if instead of while)

Since notifyAll wakes up all threads, it is very well possible that several threads
are woken up. These could finish the body of the enqueue method one by one, thus
overflowing the buffer: After the first thread that fills the buffer has finished execution,
it has falsified the condition that made the other threads wait. When the other threads
continue, they have to verify that condition again. Listing D.10 shows the faulty enq
method:

“The enq function of the buffer has an if to check the buffer-full condi-
tion instead of a while. We create one producer, one consumer, and another
low-priority producer – low-priority so that a typical scheduler will never
encounter the if-vs-while bug, but the systematic tester will find it!” [29]

Broken implementation (notify instead of notifyAll)

The notify method may only be used if all waiting threads are waiting on the same
condition. Otherwise, it can happen that thread a1 asserts condition b and calls notify,
intending to wake up a thread bn which is supposed to check that condition in a while

90 APPENDIX D. EXAMPLE LISTINGS

Listing D.8 ESC/Java example: Pathological case with two locks: hierarchy of locking
data structure is reversed during program execution.

public class Tree {
public /*@ monitored */ Tree left, right;
public /*@ monitored non_null */ Thing contents;

//@ axiom (\forall Tree t; t.left != null ==> t < t.left);
//@ axiom (\forall Tree t; t.right != null ==> t < t.right);

Tree(/*@ non_null */ Thing c) { contents = c; }

//@ requires \max(\lockset) <= this;
public synchronized void visit() {

contents.mungle();
if (left != null) left.visit();
if (right != null) right.visit();

}

//@ requires \max(\lockset) <= this;
public synchronized void wiggleWoggle() {
// Perform a rotation on this.right (but give up and just
// return if this.right or this.right.left is null):
//
// this this
// / \ / \
// ... x ... v
// / \ --> / \
// v y u x
// / \ / \
// u w w y
//
Tree x = this.right;
if (x == null) return;
synchronized (x) {

Tree v = x.left;
if (v == null) return;
synchronized (v) {

x.left = v.right;
v.right = x;
this.right = v;

} // line (a)
}
// Undo the rotation:
Tree v = this.right;
synchronized (v) { // line (b)

Tree x = v.right;
if (x != null) { // line (c)

synchronized (x) { // line (d)
v.right = x.left;
x.left = v;
this.right = x;

}
} // line (e)

}
}

}

D.1. SELECTED PROGRAMS 91

Listing D.9 Shared bounded buffer (correct version).
public class BufferWorks {

static final int ITEMS_PRODUCED = 2;

static class Producer implements Runnable {
private Buffer buffer;
public Producer(Buffer b, String n) { buffer = b; }
public void run() {

try {
for (int i=0; i<ITEMS_PRODUCED; i++) {
buffer.enq(name);

}
} catch (InterruptedException i) {
System.err.println(i);

}
}

}

static class Consumer implements Runnable {
private Buffer buffer;
public Consumer(Buffer b) { buffer = b; }
public void run() {

try {
for (int i=0; i<ITEMS_PRODUCED*2; i++) { // while (true)
buffer.deq();

}
} catch (InterruptedException i) {
System.err.println(i);

}
}

}

static class Buffer { // shared bounded buffer
static final int CAPACITY = 1;
// Need extra slot to tell full from empty
static final int BUFSIZE = CAPACITY+1;
private int first, last;
private Object[] els;
public Buffer() { first = 0; last = 0; els = new Object[BUFSIZE]; }

public synchronized void enq(Object x) throws InterruptedException {
while ((last+1) % BUFSIZE == first)
this.wait();

els[last] = x;
last = (last+1) % BUFSIZE;
this.notifyAll();

}

public synchronized Object deq() throws InterruptedException {
while (first == last)
this.wait();

Object val = els[first];
first = (first+1) % BUFSIZE;
this.notifyAll();
return val;

}
}

}

Listing D.10 Race condition: condition of wait is not checked again after having
received notification.

public synchronized void enq(Object x) throws InterruptedException {
if ((last+1) % BUFSIZE == first)
this.wait();

els[last] = x;
last = (last+1) % BUFSIZE;
this.notifyAll();

}

92 APPENDIX D. EXAMPLE LISTINGS

loop after returning from waiting. However, if thread a2 received the notification in-
stead, it only realizes that the condition it is waiting on is still false. It continues
waiting, having consumed the notify message. As a result of this, both threads will
wait forever, never receiving the message from a1.

In Listing D.11, “buffer not full” and “buffer not empty” are the two conditions
checked by enq and deq, respectively.

Listing D.11 Condition deadlock: notifyinstead of notifyAll is used, while threads
are waiting on different conditions.

public synchronized void enq(Object x) throws InterruptedException {
while ((last+1) % BUFSIZE == first)
this.wait();

els[last] = x;
last = (last+1) % BUFSIZE;
this.notify();

}

public synchronized Object deq() throws InterruptedException {
while (first == last)

this.wait();
Object val = els[first];
first = (first+1) % BUFSIZE;
this.notify();
return val;

}

Version based on semaphores

This version has been implemented based on an example found at [22], which does not
use real Java code for shared access. The Buffer class as such is a “naïve” implemen-
tation, with no statements for concurrent access. Instead, the producers and consumers
share semaphores in order to guard access to the buffer and prevent illegal operations
(Listing D.12). Three semaphores are used: mutex for locking, and full and empty
for guarding the preconditions. In this implementation, all the Java-specific statements
for synchronization are hidden in the Semaphore implementation (Listing D.13).

D.1. SELECTED PROGRAMS 93

Listing D.12 Buffer implementation using semaphores.
class Producer implements Runnable {

private Buffer buffer;
public Producer(Buffer b) { buffer = b; }
Object produce() { /* ... */ return new Integer(42); }
public void run() {

Object item;
for (;;) {

item = produce();
empty.down();
mutex.down();
b.addElement(item);
mutex.up();
full.up();

}
}

}

class Consumer implements Runnable {
private Buffer buffer;
public Consumer(Buffer b) { buffer = b; }
void consume(Object o) { /* ... */ }
public void run() {

Object item;
for (;;) {

full.down();
mutex.down();
item = b.removeElement();
mutex.up();
empty.up();
consume(item);

}
}

}

Listing D.13 Semaphore implementation.
public class Semaphore {

private int value;
public Semaphore(int initialValue) { value = initialValue; }
public synchronized void up() { value++; notify(); }
public synchronized void down() {

while (value == 0) {
try { wait(); }
catch (InterruptedException e) { }

}
value--;

}

D.1.6 Dining philosophers

These examples show different implementations of the famous “Dining Philosophers
problem” [53]. All implementations are based on semaphores. As they are imple-
mented, all versions can show starvation (lifelocks) without further refinement, depend-
ing on the scheduler used in the Java Virtual Machine. The semaphore implementation

94 APPENDIX D. EXAMPLE LISTINGS

is the same is in D.13. More implementations of algorithms that solve this problems
can be found at [22].

Listing D.14 Naïve implementation of the Dining Philosophers problem.
class PhilosopherDeadlock implements Runnable {

private int i; // which philosopher
private static int N; // # of philosophers
private static Semaphore[] fork;
private static PhilosopherDeadlock[] philosopher;

public static void main(String[] args) {
N = Integer.parseInt(args[0]);
fork = new Semaphore[N];
philosopher = new PhilosopherDeadlock[N];
for (int i = 0; i < N; i++) {

fork[i] = new Semaphore(1);
philosopher[i] = new PhilosopherDeadlock(i);

}
for (int i = 0; i < N; i++)

new Thread(philosopher[i]).start();
}

public PhilosopherDeadlock(int num) { i = num; }

public void run() {
for (;;) {

take_forks();
eat();
put_forks();
think();

}
}

void take_forks() {
fork[i].down(i);
fork[(i+1)%N].down(i);

}

void put_forks() {
fork[i].up(i);
fork[(i+1)%N].up(i);

}
}

Naïve implementation (has deadlock)

In Listing D.14, each philosopher tries the right fork first, then the left fork. A deadlock
occurs when each philosopher has taken the right fork and no more forks are available.

Version with different allocation strategy for one philosopher

In this version, instead of trying the right fork first in all cases, each philosopher tries to
lower numbered fork first. This means that the Nth philosopher tries the first fork, then
the Nth fork – which is the same order in which the first philosopher acquires the forks.
This small change breaks the loop in the locking scheme and prevents a deadlock.

D.1. SELECTED PROGRAMS 95

Listing D.15 Solution 1 for the Dining Philosophers problem involving a different
locking scheme for the last philosopher.

void take_forks() { // try lower numbered fork first
if (i == N-1) {

fork[0].down(i);
fork[i].down(i);

} else {
fork[i].down(i);
fork[i+1].down(i);

}
}

Version with host

This solution has been inspired by [46]. Here, a central host grants access to the forks.
He only allows at most N � 1 philosophers to hold forks at any time. This algorithm,
shown in Listing , simulates environment with a central resource pool. The addition to
the algorithm is a minor one (it uses the same circular fork allocation strategy as the
naïve approach). The implementation of the host is quite simple. It uses class (static)
variables to track the number of philosophers holding forks, while each philosopher has
his own instance of a host, allowing an easy implementation of the “blocking” behavior
of host.request().

96 APPENDIX D. EXAMPLE LISTINGS

Listing D.16 Solution 2 for the Dining Philosophers problem where a central host
controls access to the resources (forks).

class Host {
private volatile static int N = 0; // number of resources (forks)
private volatile static int count = 0; // number of resource users
private static Object lock = new Object();

public Host() {
N++;

}

public void request() {
synchronized(this) {

while (count == N-1) { // not if
try { wait(); }
catch(InterruptedException e) { }

}
synchronized(lock) { // cannot lock on count ...

count++; // ... because count is an "int", not an Object
}

}
}

public synchronized void release() {
count--;
notify();

}
}
class Philosopher {

/* ... */
public void run() {
for (;;) {

think();
host.request();
take_forks();
eat();
put_forks();
host.release();

}
}

}

Appendix E

Test results

This appendix contains excerpts of the output of the tests runs. Especially in the case
of ESC/Java, all irrelevant information has been omitted. The counter-examples are
not shown either, because they are too long for being included here.

Execution times for Jlint, ESC/Java and MaC were measured on an unloaded Pen-
tium III (650 MHz) running Linux and Sun’s JRE 1.3. Extremely short execution times
were indicated as such, since the results of the time command is not fully reproducible
in such cases.

ESC/Java has its own timing facility, which excludes the initialization of the engine.
Since the initialization time, while being moderate, still matters in practice, the time
command was still used to measure the execution time in that case. The effort required
for the annotations is usually moderate, but can be quite high for complex programs.

For VisualThreads (running on an old Alpha/233 MHz computer with only 116
MB RAM), the built-in time measuring was used. Because VisualThreads only runs in
GUI mode, the Java classes implementing the GUI and the X window protocol were
probably also slowing down the program quite a little. Therefore, the numbers given
for VisualThreads should be taken with caution. The output of VisualThreads is in a
GUI window, where it can unfortunately not be copied to a text file. It includes the full
class name of the object instance and also the memory address of the reference to that
object. The output given here is a simplified version of the content of the table in the
GUI window.

E.1 Benchmark

For testing the speed of the ESC/Java, a small program was taken and gradually ex-
tended in order to increase the size of the code to be checked.

For Jlint, all these tests ran clearly below 0.05s and were not very useful. When
Jlint is tested with all java/* classes that ship with Sun’s JDK 1.3.0, the old version
can validate all class files within about 0.75 seconds! The extensions did not slow Jlint
down a lot - it still runs within 1.0 seconds. VisualThreads running times could not be
directly compared, since the programs were run on an old Alpha machine, which was
clearly outmatched by the PC running Jlint and ESC/Java.

ESC/Java

97

98 APPENDIX E. TEST RESULTS

Program LOC KB Time [s]

Philosopher with status monitor 126 3 6.2
Status output now in HTML 504 11 10.4
Status with 1000 integer calculations 1512 24 12.8

E.2 Program checker results

E.2.1 Deadlock

Jlint

Deadlock.java:31: Method Deadlock.run() implementing ’Runnable’ interface is not synchronized
Verification completed: 1 reported messages

Execution time: very short (< 0.05 s)

This was the first program where Jlint showed its major weakness: It does not rec-
ognize the synchronized statement within a method. The run method is not always
synchronized (a correct program design eliminates the need for this, since each in-
stance of the class Thread is initialized with a reference to a distinct object), so this
warning generates some “noise” (but it can easily be turned off).

New Jlint

Deadlock.java:31: Method Deadlock.run() implementing ’Runnable’ interface is not synchronized
Deadlock.java:48: Lock Deadlock.a is requested while holding lock Deadlock.b, with other thread holding Deadlock.a and requesting lock Deadlock.b.
Deadlock.java:39: Lock Deadlock.b is requested while holding lock Deadlock.a, with other thread holding Deadlock.b and requesting lock Deadlock.a. Verification completed: 3 reported messages.

The extension now fully analyzes this case and prints a very precise and useful warning.

ESC/Java

Deadlock: run() ...

Deadlock.java:33: Warning: Possible deadlock (Deadlock)

synchronized (a) {
^

Execution trace information:
Executed then branch in "Deadlock.java", line 32, col 12.

Execution_time: 5.2 s

Annotations: 2

The main effort about the annotations was for figuring out which annotations to use
where. Also, the run method had to be synchronized in order to get a useful counter-
example.

The warning issued by ESC/Java is correct, but not very specific. The counter-
example is not very helpful either for locating the source of the fault, unless one is
familiar with its notation.

E.2. PROGRAM CHECKER RESULTS 99

VisualThreads

Since this is the first example, a more detailed version of the output is given here:

Deadlock occurred with cycle length 4.

� Thread Thread-2@0x51c2a0 waits for thread Thread-3@0x51c1f0.

Thread Event type Object Function

Thread-2@0x51c2a0 blocked on Deadlock$Lock@<addr1> phread_mutex_lock
Thread-3@0x51c1f0 locked Deadlock$Lock@<addr2> phread_mutex_tryrec

� Thread Thread-3@0x51c1f0 waits for thread Thread-2@0x51c2a0

Thread Event type Object Function

Thread-3@0x51c1f0 blocked on Deadlock$Lock@<addr2> phread_mutex_lock
Thread-2@0x51c2a0 locked Deadlock$Lock@<addr1> phread_mutex_tryrec

Figure E.1: Screenshot of warning for Deadlock example.

Figure E.1 shows a screenshot of the program. The full name of a thread of lock
(including its memory address) can be seen by moving the mouse pointer over it.

Execution time: 22 s (mainly for initializing the Java Virtual Machine)

VisualThreads detects the deadlock and shows a detailed report. Unfortunately, the
output of that window cannot be saved to a text file. It is possible, however, to record
the behavior of the program in a trace file, which can be replayed afterwards. The
output, despite the fact that the main thread of the JVM is counted, too (so the Java
threads start with index 2), is easy to interpret.

100 APPENDIX E. TEST RESULTS

E.2.2 Deadlock2

Jlint

LockB.java:9: Loop 1: invocation of synchronized method LockA.bar() can cause deadlock
LockA.java:12: Loop 1: invocation of synchronized method LockB.bar() can cause deadlock
Verification completed: 2 reported messages

Execution time: very short (< 0.05 s)

After remodeling the recursive locking scheme on a higher level (by introducing dummy
classes which could be automatically generated), Jlint successfully recognizes the dead-
lock.

New Jlint

The new version still finds the fault.

ESC/Java

Deadlock2: run() ...
--
Deadlock2.java:14: Warning: Precondition possibly not established (Pre)

LockA.foo(name); // recursively calls LockB.bar, obtaining a loc ...
^

Associated declaration is "LockA.java", line 6, col 6:
//@ requires \max(\lockset) <= LockA.class;

^
Execution trace information:

Executed then branch in "Deadlock2.java", line 13, col 12.
--
...
LockA: foo(java.lang.String) ...
--
LockA.java:13: Warning: Precondition possibly not established (Pre)

LockB.bar();
^

Associated declaration is "LockB.java", line 16, col 6:
//@ requires \max(\lockset) <= LockB.class;

^
Execution trace information:

Executed then branch in "LockA.java", line 9, col 6.
--
...
LockB: foo(java.lang.String) ...
--
LockB.java:13: Warning: Precondition possibly not established (Pre)

LockA.bar();
^

Associated declaration is "LockA.java", line 16, col 6:
//@ requires \max(\lockset) <= LockA.class;

^
Execution trace information:

Executed then branch in "LockB.java", line 9, col 6.
--

Execution time: 6.0 s

Annotations: 5

ESC/Java recognizes the deadlocks, and after adding some annotations, spurious warn-
ings vanish. However, the output is not easy to interpret. Especially the information
about the “then branch” in the two lock classes is confusing, since that statement just
prints out some status information. It is the first statement in that method, which is
probably the reason why the execution trace appears in this way.

E.2. PROGRAM CHECKER RESULTS 101

VisualThreads

Deadlock occurred with cycle length 4.

Execution time: 21 s

The output resembles the one from the previous example in Section B.2. Again, the
output is detailed enough for eliminating the fault.

E.2.3 Deadlock-Wait

Jlint

DeadlockWait.java:40: Method wait is called from non-synchronized method
DeadlockWait.java:54: Method notify is called from non-synchronized method
DeadlockWait.java:31: Method DeadlockWait.run() implementing ’Runnable’ interface is not synchronized
Verification completed: 3 reported messages

Jlint misses the synchronization statements working on the resources a and b and there-
fore misses the actual problem. Reorganizing the source code intro three classes elim-
inates the warnings (while keeping the problem), showing that Jlint does not check for
synchronization problems within methods.

Execution time: very short (< 0.06 s)

New Jlint

DeadlockWait.java:40: Method wait() can be invoked with monitor of other object locked. DeadlockWait.java:40: Holding 2 lock(s): b, a.
DeadlockWait.java:33: Method DeadlockWait.run() implementing ’Runnable’ interface is not synchronized. Verification completed: 2 reported messages.

The first warning, despite consisting of two statements, is counted as one. It precisely
states where and why the failure occurs and also gives the current lock set (in the
reverse order in which the locks were acquired).

ESC/Java

DeadlockWait: run() ...
--
DeadlockWait.java:34: Warning: Possible deadlock (Deadlock)

synchronized (a) {
^

Execution trace information:
Executed then branch in "DeadlockWait.java", line 33, col 12.

--

Execution time: 4.9 s

Annotations: 3 (trivial) annotations plus synchronized declaration of run method

ESC/Java finds the deadlock, but information it gives about it is rather scarce.

VisualThreads

Interestingly, the output was not the same when VisualThreads was ran twice. For
better readability, the memory addresses have been replaced with an index, where each
index corresponds to a unique memory address.

102 APPENDIX E. TEST RESULTS

Run 1:

Thread 2: Blocked on DeadlockWait$Lock_1, owned DeadlockWait$Lock_2
Thread 3: Blocked on DeadlockWait$Lock_2

Execution time: 22+ s (graph continues with all threads blocked)

Run 2:

Thread 2: Blocked on DeadlockWait$Lock_1, owned DeadlockWait$Lock_2
Thread 3: Terminated

Execution time: 22+ s (graph continue s with all threads blocked and one thread ter-
minated)

The output is harder to interpret than in the previous examples, because Thread 2 waits
on a notify call from Thread 3. The POSIX level on which VisualThreads operates is
too low to show this Java functionality.

E.2.4 Deadlock-Wait2

Jlint

LockB.java:22: Method wait() can be invoked with monitor of other object locked
LockA.java:21: Call sequence to method LockB.foo(java.lang.String, boolean) can cause deadlock in wait()
Verification completed: 2 reported messages

Execution time: very short (< 0.05 s)

After remodeling the problem on a method level, Jlint detects the fatal dependency
between the two classes that lock each other’s instance.

New Jlint

The new version still finds the fault.

ESC/Java

DeadlockWait2: run() ...
--
DeadlockWait2.java:14: Warning: Precondition possibly not established (Pre)

lock.foo(name, ab);
^

Associated declaration is "LockA.java", line 16, col 6:
//@ requires \max(\lockset) <= this;

--
LockA: foo(java.lang.String, boolean) ...
Fatal error: Unexpected exit by Simplify subprocess

Execution time: 5.4 s

Annotations: 3

ESC/Java detects the deadlock (i.e. the violation of the assumption that the singleton
instance of the LockA class can always obtain an exclusive lock on itself). The reason
why Simplify exits abnormally later on is unknown.

E.2. PROGRAM CHECKER RESULTS 103

VisualThreads

In this case, VisualThreads showed very nicely how the deadlock occurred. Since the
Java source code included a sleep() call that waited for some time, the deadlock was
to happen for sure, and the intermediate phase (with both threads waiting) is shown
nicely by VisualThreads. (The delay is higher when run in VisualThreads because the
entire virtual machine is slowed down.)

Figure E.2: Graph for DeadlockWait2 produced by VisualThreads.

State 1 (at T � 21s):

Thread 2 Blocked on LockA Owned: DeadlockWait2
Thread 3 Running Owned: java.lang.Class, LockA

State 2 (at T
�

23s):

Thread 2 Blocked on LockB Owned: LockA, DeadlockWait2
Thread 3 Terminated

Execution Time: 23+ s (no state change after that)

While one can assume that the program is not progressing anymore (since no events
occur), VisualThreads again gives no hints about wait or notify methods. However,
since all the important classes are directly visible in the output, it should not be too
hard to find the fault in a real program.

E.2.5 Deadlock3

Jlint

Deadlock3.java:35: Method Deadlock3.run() implementing ’Runnable’ interface is not synchronized
Verification completed: 1 reported messages

Execution time: very short (< 0.05 s)

Again, Jlint cannot detect deadlocks within a method. After the two preceding exam-
ples, it is obvious that Jlint would detect the cycle on a higher level.

104 APPENDIX E. TEST RESULTS

New Jlint

Deadlock3.java:35: Method Deadlock3.run() implementing ’Runnable’ interface is not synchronized.
Deadlock3.java:58: Lock Deadlock3.a is requested while holding lock Deadlock3.c, with other thread holding Deadlock3.a and requesting lock Deadlock3.c.
Deadlock3.java:40: Lock Deadlock3.b is requested while holding lock Deadlock3.a, with other thread holding Deadlock3.b and requesting lock Deadlock3.a.
Deadlock3.java:49: Lock Deadlock3.c is requested while holding lock Deadlock3.b, with other thread holding Deadlock3.c and requesting lock Deadlock3.b.
Verification completed: 4 reported messages.

As in the “Deadlock2” example, Jlint detects the fault and gives a precise analysis.

ESC/Java

Deadlock3: run() ...
--
Deadlock3.java:38: Warning: Possible deadlock (Deadlock)

synchronized (a) {
^

Execution trace information:
Executed then branch in "Deadlock3.java", line 37, col 20.

--

Execution time: 4.9 s

Annotations: 3 annotations and synchronized declaration of run method in order to
get a more useful counter-example.

ESC/Java detects the possible deadlock, but the counter-example information is incom-
plete and likely not very helpful for a more complex program.

VisualThreads

First run: nothing detected.

Second run:

Deadlock occurred with cycle length 6.
Thread 4 waits for Thread 2.
Thread 2 waits for Thread 3.
Thread 3 waits for Thread 4.

Execution time: 20 s

Here, a principal weakness of a dynamic checker shows clearly: even with the same
input, it is not certain that a deadlock actually occurs. It is still surprising that Visu-
alThreads did not detect the cycle in the lock graph when run for the first time. Is this
because the JVM may not report the same memory address for each thread for the static
locks? Running the demonstration program written in C suggests that VisualThreads
would have detected this fault in a program.

E.2.6 SplitSync

Jlint

SplitSync.java:32: Method SplitSync.run() implementing ’Runnable’ interface is not synchronized
Verification completed: 1 reported messages

E.2. PROGRAM CHECKER RESULTS 105

Execution time: very short (< 0.05 s)

Jlint gives the usual warning about the run method but fails to see the real problem.
Even remodeling the problem into two synchronized methods, with two threads using
the same instance of that object, does not enable Jlint to recognize this race condition.

New Jlint

The output is unchanged; Jlint was not extended for detecting this fault.

ESC/Java

SplitSync: run() ...

SplitSync.java:34: Warning: Possible deadlock (Deadlock)

synchronized (resource) {
^

Execution time: 4.8 s

Annotations: 3 annotations, synchronized declaration of run method.

Instead of a possible race condition, ESC/Java detects a non-existent deadlock. Be-
cause the monitored pragma does not work on static fields, this spurious warning is
difficult to eliminate. A try with an altered version of the program, where the static
field resource was replaced with a singleton instance, did not produce the desired
result either.

VisualThreads

VisualThreads was run twice, and no race condition or other problem was detected.

Execution time: 21 s

It was to be expected that such a race condition due to a “gap” in the locking scheme
would not be detected by a dynamic checker that does not control the Java thread
scheduler.

E.2.7 Jlint test example

Jlint

B.java:5: Loop 1: invocation of synchronized method B.g1()
can cause deadlock
B.java:8: Loop 2: invocation of synchronized method A.f1(B)
can cause deadlock
A.java:3: Loop 2: invocation of synchronized method B.g1()
can cause deadlock
B.java:8: Loop 3: invocation of synchronized method A.f1(B)
can cause deadlock
A.java:5: Loop 3/1: invocation of method A.f2(B) forms the
loop in class dependency graph
A.java:8: Loop 3: invocation of synchronized method B.g2()
can cause deadlock
Verification completed: 6 reported messages

106 APPENDIX E. TEST RESULTS

Execution time: very short (< 0.08 s)

As expected, Jlint finds all possible deadlocks and gives a very helpful report.

New Jlint

The new version still finds the fault.

ESC/Java

A.java:4: Warning: Precondition possibly not established (Pre)
b.g1();

^
Associated declaration is "B.java", line 5, col 6:

//@ requires \max(\lockset) <= this;
^

A.java:9: Warning: Precondition possibly not established (Pre)
b.g2();

^
Associated declaration is "B.java", line 10, col 6:

//@ requires \max(\lockset) <= this;
^

B.java:7: Warning: Precondition possibly not established (Pre)
bp.g1();

^
Associated declaration is "B.java", line 5, col 6:

//@ requires \max(\lockset) <= this;
^

B.java:12: Warning: Precondition possibly not established (Pre)
ap.f1(bp);

^
Associated declaration is "A.java", line 2, col 6:

//@ requires \max(\lockset) <= this;
^

B.java:15: Warning: Possible deadlock (Deadlock)
public static synchronized void g3() {

^
5 warnings

Execution time: 4.0 s

Annotations: 9 standard annotations for synchronized methods.

This example shows two classes without any context in which they are used. This
is why a few non_null annotations are required in order to suppress warnings about
initialized fields. Even before this is done, ESC/Java warns about possible deadlocks
in each method. After adding a few assumptions about the locking order, ESC/Java
shows a slightly more detailed warning, but the warning itself does not include enough
context to be helpful, and the counter-example is full of low-level information that
makes it hard to determine whether the warning refers to a real fault and what the
cause might be.

VisualThreads

Since this example was not a full program, it could not be tested with VisualThreads.

E.2. PROGRAM CHECKER RESULTS 107

E.2.8 ESC/Java example

Jlint

Tree.java:16: Loop 1: invocation of synchronized method Tree.visit() can cause deadlock
Tree.java:17: Loop 2: invocation of synchronized method Tree.visit() can cause deadlock
Verification completed: 2 reported messages

Execution time: very short (< 0.05 s)

The warnings here are false positives, and only justified if the data structure (a binary
tree) is somehow corrupted; otherwise, no circular locks can occur during the recursive
visiting.

Jlint correctly gives no warnings for the wiggleWoggle method, but it does not
seem to analyze the method body at all.

New Jlint

Tree.java:50: Lock Tree.right is requested while holding lock Tree.right, with other thread holding Tree.right and requesting lock Tree.right.
Tree.java:16: Loop 2: invocation of synchronized method Tree.visit() can cause deadlock.
Tree.java:17: Loop 3: invocation of synchronized method Tree.visit() can cause deadlock.
Verification completed: 3 reported messages.

Like ESC/Java, Jlint now prints a spurious warning about a possible Deadlock. This
warning does not parse the content of the local variables yet, so it may look rather
confusing.

ESC/Java

Tree: wiggleWoggle() ...

Tree.java:50: Warning: Possible deadlock (Deadlock)

synchronized (x) { // line (d)
^

Execution trace information:
Executed else branch in "Tree.java", line 34, col 6.
Executed else branch in "Tree.java", line 37, col 8.
Executed then branch in "Tree.java", line 49, col 23.

Execution time: 3.8 s

Annotations: 7 (given in the example)

The ESC/Java manual documents the problems with the wiggleWoggle method:1

“The problem is that the axiom is assumed to apply at the start of the
routine, and thus to apply to the values of .left and .right at the start
of the routine. According to the lock order thus defined, the lock acquired
at the line (d) would precede that acquired at (b). [Despite these caveats,
our experience with ESC for Modula 3 suggests that axioms like the ones
above will do the right thing surprisingly often and rarely cause problems.]

1Listing D.8 with the annotated source is on page 90.

108 APPENDIX E. TEST RESULTS

The preceding example also illustrates a possible source of unsound-
ness in ESC/Java’s treatment of race detection. If the lines marked (c) and
(e) are deleted, and if deadlock checking is left disabled, then ESC/Java
will accept line (d) without complaint, ignoring the possibility that some
other thread might have taken advantage of the window between lines (a)
and (b) to synchronize on “v” and set its .right field to null.”

VisualThreads

Again, this program was not a full executable, so one would have to have written a
test driver in order to check it with VisualThreads. Since the program had not actual
deadlock or race condition, this test was omitted.

E.2.9 Buffer

Jlint

BufferWorks.java:49: Method BufferWorks$Consumer.run() implementing ’Runnable’ interface is not synchronized
BufferWorks.java:32: Method BufferWorks$Producer.run() implementing ’Runnable’ interface is not synchronized
Verification completed: 2 reported messages

Execution time: very short (< 0.05 s)

Two warnings about bad code design, but no false positives.

New Jlint

Still only design guide warnings, no false positives.

ESC/Java

BufferWorks$Producer: run() ...
--
BufferWorks.java:38: Warning: Precondition possibly not established (Pre)

buffer.enq(name);
^

Associated declaration is "BufferWorks.java", line 82, col 8:
//@ requires \max(\lockset) <= this;

^
Execution trace information:

Reached top of loop after 0 iterations in "BufferWorks.java", line 34, col 1.
Executed else branch in "BufferWorks.java", line 38, col 5.

--
BufferWorks$Consumer: run() ...
--
BufferWorks.java:53: Warning: Precondition possibly not established (Pre)

buffer.deq();
^

Associated declaration is "BufferWorks.java", line 99, col 8:
//@ requires \max(\lockset) <= this;

^
Execution trace information:

Reached top of loop after 0 iterations in "BufferWorks.java", line 52, col 1.
--

These two warnings make sense; after all, they are issued at the critical sections
of the code. It is not possible to assure (at least not directly) that one consumer (or
producer) thread will always eventually make sure that the buffer does not stay full (or
empty, respectively).

E.2. PROGRAM CHECKER RESULTS 109

Execution time: 7.1 s

Annotations: 11

VisualThreads

Two runs were made, with different outputs:

Run 1: No violations detected.

Mutex BufferWorks$Buffer was highly contended.
The Overall wait/locked ratio was 1.62314 which exceeds the analyses threshold of 1.00000.
Threads spent a total of 0.42480 seconds waiting for mutex BufferWorks$Buffer which was only locked for 0.26171. On average, waiters took 0.07080 seconds to acquire the lock.

Run 2: No violations detected. [No warnings.]

Execution time: 21 s (in both cases)

It is interesting that ESC/Java detects a possible performance problem in one case and
not in another. Nevertheless, it did not report a real fault for this program, so the output
is correct in both cases.

E.2.10 BufferIf

Jlint

Jlint produces the same warnings as above, also in the same time, and misses the subtle
fault.

New Jlint

Jlint still misses the fault.

ESC/Java

The result is the same as for the Buffer program (see Section E.2.9).

VisualThreads

The tool was run three times, and the fault went undetected each time. This shows that
subtle faults that require an unusual timing by the thread scheduler cannot be detected
by VisualThreads.

Execution time: 20 s (in all cases)

E.2.11 BufferNotify

Jlint

Again, Jlint produces the usual two warnings without recognizing the fault.

110 APPENDIX E. TEST RESULTS

New Jlint

Jlint still misses the fault.

ESC/Java

The result is the same as for the Buffer program (see Section E.2.9).

VisualThreads

Figure E.3: Graph for BufferNotify produced by VisualThreads

� State 1 (at T � 20s):

Thread 2 Ready Owned: java.lang.Class
Thread 3 Block on java.lang.Class

� State 2 (at T
�

22s):

Thread 2 Terminated
Thread 3 Block on Buffer$Notify
Thread 4 Block on Buffer$Notify

Execution time: 22+ s (no state change afterwards)

The result is similar to the DeadlockWait example (Listing D.3), where the notify
message never receives its correct destination. It is surprising that this failure occurred
during dynamic execution. It is likely that the different timing in Java’s slowed down
thread scheduler was the reason for this.

E.2.12 BufferSem

Jlint

BufferTest.java:38: Method BufferTest$Consumer.run() implementing ’Runnable’ interface is not synchronized
BufferTest.java:21: Method BufferTest$Producer.run() implementing ’Runnable’ interface is not synchronized
Verification completed: 2 reported messages

E.2. PROGRAM CHECKER RESULTS 111

Execution time: very short (< 0.05 s)

The same as for the first correct version of the buffer program: two warnings, no false
warnings reported.

New Jlint

Two design warnings, no false positives.

ESC/Java

No warnings.

Annotations: 17 (plus 5 annotations in the Semaphore class)

Execution time: 7.1 s

With the initial set of annotations, ESC/Java would produce a warning that a precondi-
tion in the Semaphore class may be violated when the Producer acquires the “empty”
(nonfull) semaphore. It was then tried to express some dynamic conditions using
model variables. However, these properties are too complex to be expressed in the
ESC/Java annotation language. In the end, this turned out not to be the reason for the
issued warnings; the reason was much simpler. Jim Saxe from Compaq gave me advice
on how to work around this problem:

“The problem is that ESC/Java doesn’t "know" that a newly-forked
thread holds no locks. This is fixed in the new version of ESC/Java, which
we plan to release soon. For now, you can work around the problem. (. . .
)

Second, inform ESC/Java that null precedes all actual objects in the
locking order. (. . .) The next release of ESC/Java will deal with all this
automatically.”

VisualThreads

No violations were detected (which is correct).

Execution time: 19 s

E.2.13 PhilosopherDeadlock

Jlint

PhilosopherDeadlock.java:36: Method PhilosopherDeadlock.run()
implementing ’Runnable’ interface is not synchronized
Verification completed: 1 reported messages

Four additional warning messages about a debugging information in the classes
Status and Semaphore were also produced; they were always of the type “Field f of
class C can be accessed from different threads and is not volatile”. While Jlint gives
some helpful warnings, it misses the deadlock.

Execution time: very short (< 0.1 s)

112 APPENDIX E. TEST RESULTS

New Jlint

Jlint still misses the fault.

ESC/Java

PhilosopherDeadlock: take_forks() ...

PhilosopherDeadlock.java:50: Warning: Precondition possibly not established (Pre)

fork[i].down(i);
^

Associated declaration is "/home/cartho/java/ipc/Semaphore.java", line 27, col 6:
//@ requires \max(\lockset) <= this;

^

PhilosopherDeadlock.java:58: Warning: Precondition possibly not established (Pre)

fork[i].up(i);
^

Associated declaration is "/home/cartho/java/ipc/Semaphore.java", line 21, col 6:
//@ requires \max(\lockset) <= this;

^

Execution time: 5.1 s

Annotations: 10

In order to avoid warnings about program properties that were not of concern, the check
was run with

escjava -warn Deadlock -warn Race -nowarn Exception \
-nowarn IndexNegative -nowarn IndexTooBig PhilosopherDeadlock.java

Most of the annotations, where several approaches were tried, deal with warnings
about possible null pointers. Others are a first approach trying to get rid of “In-
dexNegative” and “IndexTooBig” warnings. The annotations are certainly not com-
plete enough in order to allow ESC/Java to give a more precise warning. The given
warnings may be right, but they originate from insufficient knowledge about the pro-
gram rather than a thorough analysis. However, expressing the dynamic requirements
for being able to obtain a fork (and also the circular structure of the locks) is probably
not possible in the ESC/Java annotation language.

VisualThreads

Two runs were made with VisualThreads, for 10 and 15 minutes, respectively. During
that time, a deadlock would have happened long ago under normal circumstances. Fig-
ure E.4 shows, though, that the different threads just continuously change states, with-
out ever locking each other out for an extended period of time. This is a very strong
indicator that the thread scheduling is heavily influenced by the overhead caused by
VisualThreads.

Execution time: 10 and 15 minutes (no termination)

E.2. PROGRAM CHECKER RESULTS 113

Figure E.4: Alternating thread states in VisualThreads.

E.2.14 Philosopher

Jlint

The reported warnings are the same as in the faulty version, and the execution time is
equal.

New Jlint

Output still correct.

ESC/Java

See above.

VisualThreads

The program was run for 5 and 10 minutes, respectively, with the same result as in the
previous example. Since this version does not deadlock, this result was to be expected.

E.2.15 PhilosopherHost

Jlint

Host.java:17: Method wait is called from non-synchronized method

Execution time: very short (< 0.1 s)

There are seven more warnings, which are the same ones as in the previous instances
of this problem. This false warning is quite interesting, though: as one can see in
Listing D.16 on page 96, the wait statement is within a synchronized(this) block.
Therefore that instance holds a lock to itself, making the wait call safe. Again, Jlint
misses the synchronization statement.

New Jlint

The spurious warning shown above has been removed. The output is now correct.

114 APPENDIX E. TEST RESULTS

ESC/Java

Host: request() ...
--
Host.java:15: Warning: Possible assertion failure (Assert)

/*@ assert \lockset[this] || \max(\lockset) < this */
^

--
PhilosopherHost: run() ...
--
PhilosopherHost.java:50: Warning: Precondition possibly not established (Pre)

host.release();
^

Associated declaration is "Host.java", line 29, col 6:
//@ requires \max(\lockset) <= this

^
Execution trace information:

Reached top of loop after 0 iterations in "PhilosopherHost.java", line 44, col 4.
--
PhilosopherHost: take_forks() ...
--
PhilosopherHost.java:56: Warning: Precondition possibly not established (Pre)

fork[i].down(i);
^

Associated declaration is "/home/cartho/java/ipc/Semaphore.java", line 27, col 6:
//@ requires \max(\lockset) <= this;

^
--
PhilosopherHost: put_forks() ...

PhilosopherHost.java:64: Warning: Precondition possibly not established

fork[i].up(i);
^

Associated declaration is "/home/cartho/java/ipc/Semaphore.java", line
:

//@ requires \max(\lockset) <= this;
^

Execution time: 5.3 s

Annotations: 15

The synchronized(lock) block, which works on a static member, was rather difficult
to annotate. The current annotations do not remove spurious warnings about possible
deadlocks.2 Again, the problem is too complex to be expressed in the ESC/Java anno-
tation language.

VisualThreads

Like in the other two examples, VisualThreads did not detect any violations after 5 and
10 minutes time.

2It is of course possible that the implementation of the host (Host.java) may indeed exhibit a deadlock
under certain circumstances, but this has not occurred yet in dynamic testing.

Appendix F

Results of new Jlint

This appendix shows the test results of applying the improved Jlint to various pack-
ages. In some cases, the old version of Jlint was used as well to obtain a quantitative
comparison.

F.1 Extra Jlint examples

In order to ensure the correctness of the new Jlint features, a few new test programs
were written in Java. These programs exhibit various race conditions or deadlock prob-
lems.

F.1.1 Race conditions, wait problems

Wait.java

Listing F.1 Two faults regarding a wait call: Calling wait without owning the right
lock, while owning other locks (the latter could lead to a deadlock).

public class Wait {
public void a() {

Object lock = new Object();
Object lock2 = new Object();
synchronized(lock) {
try {
lock2.wait();

}
catch (InterruptedException e) { }

}
}

}

Old Jlint

Wait.java:17: Method wait is called from non-synchronized method

115

116 APPENDIX F. RESULTS OF NEW JLINT

New Jlint

Wait.java:17: Method ’<new>1.wait’ is called without synchronizing on ’<new>1’.
Wait.java:17: Method wait() can be invoked with monitor of other object locked.
Wait.java:17: Holding 1 lock(s): <new>0.

The old Jlint did not support synchronized blocks; therefore its warning is very gen-
eral, and frequently a warning of this type is incorrect (although not in this case). The
new Jlint detects both faults and reports a precise warning. It has also been success-
fully tested against correct versions of this program1, with synchronizations on this,
instance or class variables.

F.1.2 Deadlocks

Inter-method deadlock

Listing F.2 Deadlock scenario among two methods: methods foo and bar acquire
locks a and b in a conflicting order.

public class Deadlock {
Object a = new Object();
Object b = new Object();

public void foo() {
synchronized (a) {
synchronized (b) { }

}
}

public void bar() {
synchronized (b) {
synchronized (a) { }

}
}

}

Old Jlint

No warnings.

New Jlint

Deadlock.java:13: Lock Deadlock.a is requested while holding lock Deadlock.b, with other thread holding Deadlock.a and requesting lock Deadlock.b.
Deadlock.java:7: Lock Deadlock.b is requested while holding lock Deadlock.a, with other thread holding Deadlock.b and requesting lock Deadlock.a.

Note that since the deadlock analysis starts after all class files have been processed, the
order in which the deadlocks are reported may not correspond to the one in the source
file.

1In these versions, the wait() call applies to the object that was just synchronized on, and no other
monitors are owned at that time.

F.1. EXTRA JLINT EXAMPLES 117

Listing F.3 More complicated version of the same deadlock: Two threads may call
foo(boolean ab) with different values of ab, entering the two montors in conflicting
order.

public class Deadlock2 {
Object a = new Object();
Object b = new Object();

public void foo(boolean ab) {
if (ab) {
synchronized (a) {
bar(!ab);

}
} else {
synchronized (b) {
bar(!ab);

}
}

}

public void bar(boolean ab) {
if (ab) {
synchronized (a) { }

} else {
synchronized (b) { }

}
}

}

118 APPENDIX F. RESULTS OF NEW JLINT

Old Jlint

Deadlock2.java:12: Comparison always produces the same result

Line 12 is the second method call to bar(!ab). Sun’s version 1.3 of the Java compiler
duplicates the check for the value of ab; therefore this warning is caused by inefficient
code generation of that compiler rather than a real fault.

New Jlint

Deadlock2.java:12: Comparison always produces the same result.
Deadlock2.java:21: Lock Deadlock2.b is requested while holding lock Deadlock2.a, with other thread holding Deadlock2.b and requesting lock Deadlock2.a.
Deadlock2.java:19: Lock Deadlock2.a is requested while holding lock Deadlock2.b, with other thread holding Deadlock2.a and requesting lock Deadlock2.b.

The improved Jlint now also finds this bug, although it does not evaluate the value
of the boolean variable ab; it does not perform a data flow analysis of that flag and
cannot determine which of the two branches in bar would be executed; hence it tries
both. This means it would have reported that warning, too, if bar was (correctly) called
without inverting ab first.

F.1.3 Lock reference changes

Example

Listing F.4 Assigning a new value to a lock variable.
public class Deadlock3 {

Object a = new Object();
Object b = new Object();

public void foo(boolean ab) {
if (ab) {
synchronized (a) {

bar(!ab);
}

} else {
synchronized (b) {

bar(!ab);
}

}
}

public void bar(boolean ab) {
a = new Object();
if (ab) {
synchronized (a) { }

} else {
synchronized (b) { }

}
}

}

F.2. TRILOGY’S SOURCE CODE 119

Old Jlint

Same output is in previous example.

New Jlint

Additionally to the output of the previous example, the following warning is printed:

Deadlock4.java:18: Value of lock a is changed while (potentially) owning it.

Again, Jlint cannot distinguish between the two cases where the lock on a is already
owned and where it is not. (Such an analysis would also greatly slow down the ana-
lyzer.)

F.2 Trilogy’s source code

The goal was to find as many potential faults as possible, and to avoid spending time
checking spurious warnings. Therefore, no test was made using the old Jlint. It is
always clear which warnings were given because of the extensions. On the other hand,
the number of suppressed warnings due to improved lock analyses is not quantifiable
using only the output if the new Jlint.

Because the number of warnings was sometimes very high, usually a filter was
applied, in the following form:

#!/bin/bash
find . -name ’*.class’ | xargs jlint -not_overridden \
-redundant -weak_cmp -bounds -zero_operand -string_cmp -shadow_local | \
grep -v ’Field .class\$’ | grep -v ’can be .*ed from different threads’ | \
grep -v ’Method.*Runnable.*synch’

This filter suppresses any warnings that refer to design issues or are likely spurious
warnings due to insufficient data flow analysis. In the detailed the following tables,
several warnings referring to exactly the same variable were counted as one; warnings
that occurred due to Jlint bugs were not counted. The totals in the tables are there-
fore not consistent with the raw count of filtered warnings. Two packages (catalogsvc
and tce2) were not examined because their compilation required third party packages,
which were not installed on the system used. Moreover, those two packages did not
employ multi-threading as much as the ones analyzed below.

F.2.1 MCC Core (ffcaf)

Unfiltered: 447 warnings.

Filtered: 32 warnings.

See table F.1 for a list of warnings that referred to distinct places in the source code.
Out of these warnings, two were confirmed as bugs. Several null pointer warnings
were in the same module, which was already deprecated and will likely be entirely
removed soon because of these warnings.

120 APPENDIX F. RESULTS OF NEW JLINT

Warning category # Comment

Lock variable change outside con-
structor or synchronization.

2 Initialization method; unsafe code but no
bug.

Missing super.finalize() call. 1 Confirmed bug; fixed.
Shift < < with count

�
32. Possibly

incorrect type cast.
1 Two warnings for the same bug: the expan-

sion from int to long comes after the left
shift.

Possible loop in locking graph (syn-
chronized methods).

4 Two cases that are probably OK but cannot
be checked statically; two cases that need
further investigation by someone working
on that code.

Possible NULL pointer reference be-
cause parameter is not checked.

9 Three warnings are definitely wrong from
the context; the other warnings are “just
unsafe code.“

Table F.1: Analysis of Jlint warnings for MCC Core.

F.2.2 Cerium (hec)

Unfiltered: 166 warnings.

Filtered: 4 warnings.

Table F.2 shows the warnings that referred to distinct places in the source code.

Warning category # Comment

Lock variable change outside con-
structor or synchronization.

1 Initialization method; unsafe code but no
bug.

Possible NULL pointer reference be-
cause parameter is not checked.

3 One warning was for a method where NULL
is a valid parameter; yet that reference was
still used later. Maybe no execution path
for that scenario exists?

Table F.2: Analysis of Jlint warnings for Cerium.

F.2.3 Log player (sbjni)

Unfiltered: 41 warnings.

Filtered: 1 warning. This warning is because the same lock is acquired twice in two
different methods (which is OK). This is incorrectly interpreted by Jlint as two
different locks.

F.2.4 Java backbone (scbbjava)

Unfiltered: 647 warnings.

Filtered: 44 warnings.

Table F.3 shows the warnings that referred to distinct places in the source code.

F.2. TRILOGY’S SOURCE CODE 121

Warning category # Comment

Lock variable change outside con-
structor or synchronization.

1 Possibly a bug; not yet verified.

Missing super.finalize() call. 11 Bad coding practice in the best case, possi-
bly even a fault.

Synchronized method is overridden
by non-synchronized method. . .

1 As a result of this, an assignment within
the overriding method is not guarded by a
synchronization; a possible bug.

Possible loop in locking graph (syn-
chronized method).

5 Three false positives, two more complex
cases that are probably also working cor-
rectly.

Possible NULL pointer reference be-
cause of unexpected input or state.

2 1) If URL syntax was not correct, NULL
dereference could occur. Not sure whether
URL syntax is tested elsewhere. 2) Hap-
pens when a function returns false, which
is probably never the case under normal
circumstances.

Possible NULL pointer reference be-
cause parameter is not checked.

4 One false positive, three cases of unsafe
coding practice.

Table F.3: Analysis of Jlint warnings for the Java backbone.

F.2.5 Trilogy Insurance Calculation Engine (trilogyice)

Unfiltered: 30 warnings.

Filtered: 19 warnings.

See table F.4 for a list of warnings that referred to distinct places in the source code.
Out of the four null pointer reference warnings, two were confirmed as bugs and fixed.
Two null pointer warnings referring to the usage of javax.beans.* classes were not
bugs, because the contract with these classes ensures that the “dangerous” method is
never called if those pointers are null. This could not be determined statically.

From the seven null pointer warnings, three occurred in private methods whose
usage is always correct; four occurred in methods where these cases were documented
as “undefined behavior”. The latter four cases were fixed nonetheless. The potential
race condition was confirmed and fixed as well.

Jlint has been remarkably successful in this module: Out of only 19 warnings (some
of which were about the same fault in different lines), seven warnings resulted in bug
fixes!

F.2.6 Summary

Table F.5 shows an overview of the frequency of all warnings that Jlint issued for
Trilogy’s code. While a rather large part of the warnings are not bug detections, most
of these warnings are hints to existing trouble spots in the code. At least ten warnings
lead to actual changes in the code; a few other warnings, however, resulted in extra
comments in the code (which is also valuable).

122 APPENDIX F. RESULTS OF NEW JLINT

Warning category # Comment

Possible loop in locking graph (syn-
chronized methods).

4 Four times the same situation: a new in-
stance does not have a reference to the in-
stance that created it; therefore a deadlock
in synchronized methods is impossible.

Possible race condition (usually fil-
tered out)

1 Debug output, where a race condition can
probably be tolerated.

Possible NULL pointer reference be-
cause of unexpected input or state.

4 Seem to be faults, but not yet verified.

Possible NULL pointer reference be-
cause parameter is not checked.

7 In three cases (container class), NULL
pointer check probably omitted for perfor-
mance reasons.

Table F.4: Analysis of Jlint warnings for trilogyice.

Warning category #

Lock variable change outside con-
structor or synchronization.

3

Missing super.finalize() call. 12
Possible loop in locking graph (syn-
chronized methods).

13

Possible NULL pointer reference be-
cause parameter is not checked.

23

Possible NULL pointer reference be-
cause of unexpected input or state.

6

Other 4

Table F.5: Summary of Jlint’s warnings in Trilogy’s code

F.3. CONCURRENCY PACKAGE 123

F.3 Concurrency package

Old Jlint

Unfiltered: 197 warnings.

Filtered: 6 warnings.

New Jlint

Unfiltered: 170 warnings.

Filtered: 82 warnings.

There is a striking difference between the number of warnings reported. This concur-
rency package makes heavy use of synchronized blocks. Hence the refined checks
suppress a lot of false positives, while generating a large number of new warnings.

Out of the remaining 82 warnings of the new Jlint, 31 false positives occurred
because a synchronized block was “interrupted” by in if or return statement. They
were all of type

Method x.wait|notify is called without synchronizing on x.

This caused several monitorexit statements to be present in the source code, although
only one could be executed at a time. Even after a return, Jlint would continue its
analysis with the old context, assuming the lock had already been released. Such false
warnings could be eliminated with full flow control.

17 new warnings were obviously caused by a fault in Jlint, all of type

Lock x is acquired while holding lock y,
with other thread holding lock y and requesting x.

These were only 5 unique warnings, all with wrong line numbers. This failure could
not be reproduced with other bytecode. Subtracting these warnings from the total, only
34 remain. Out of these, 26 warnings were potential deadlock warnings that were
difficult to verify and probably went beyond the capabilities of a static analyzer (only
four such warnings were issued by the original Jlint, because its analysis is coarser).
The reason of 5 warnings about invoking wait() with having other monitors locked
could not be found – possibly this is also due to a bug in Jlint. This leaves three
warnings:

EDU/oswego/cs/dl/util/concurrent/BoundedLinkedQueue.java:276:
Value of lock last_ is changed while (potentially) owning it.

This warning occurs because a new node is inserted into a list – this case is difficult
to analyze statically, but the code is correct.

EDU/oswego/cs/dl/util/concurrent/BoundedLinkedQueue.java:296:
Method wait() can be invoked with monitor of other object locked.
EDU/oswego/cs/dl/util/concurrent/BoundedLinkedQueue.java:296:
Holding 2 lock(s): <this>, putGuard_.
EDU/oswego/cs/dl/util/concurrent/LinkedQueue.java:70:
Value of lock last_ is changed while (potentially) owning it.

124 APPENDIX F. RESULTS OF NEW JLINT

The correctness here depends on the correct values of certain counters and the cor-
rect functionality of other methods; it could not be verified easily.

Because this package is very complex, and showed many remaining weaknesses in
Jlint, statistics of the output would too skewed by these problems.

F.4 ETHZ data warehousing tool

Unfiltered: 150 warnings.

Filtered: 23 warnings.

Most warnings given here were not verified (with the exception of the lock change),
because the code was already two months old when the new Jlint was applied to it.
The lock change was indeed a fault in the algorithm, and that fault was actually found
by manual inspection of intermediate files generated for the statistical analysis (see
Appendix A). This success was the reason why such a check was added to Jlint.

Warning category # Comment

Lock variable change outside con-
structor or synchronization.

2 Verified, and fixed.

Possible loop in locking graph (syn-
chronized methods).

1 False warning? Method is not
synchronized; maybe a fault in Jlint.

Missing super.finalize() call. 3 Not verified.
Possible NULL pointer reference be-
cause of unexpected input or state.

6 Not verified.

Possible NULL pointer reference be-
cause parameter is not checked.

2 Not verified.

Table F.6: Analysis of Jlint warnings for the ETH data warehousing tool.

Bibliography

[1] SPIN model checker http://netlib.bell-labs.com/netlib/spin/
whatispin.html

[2] Bandera http://www.cis.ksu.edu/santos/bandera/

[3] ESC/Java http://research.compaq.com/SRC/esc/

[4] FeaVer http://cm.bell-labs.com/cm/cs/who/gerard/abs.html

[5] Java PathFinder http://ase.arc.nasa.gov/jpf/

[6] SLAM http://research.microsoft.com/slam/

[7] Flavers http://laser.cs.umass.edu/tools/flavers.html

[8] Jlint http://www.ispras.ru/~knizhnik/jlint/ReadMe.htm

[9] Forte for C http://www.sun.com/forte/c/

[10] MC http://hands.stanford.edu/

[11] Modeling and Checking http://www.cis.upenn.edu/~rtg/mac/

[12] Rivet http://sdg.lcs.mit.edu/rivet.html

[13] Verisoft http://www1.bell-labs.com/project/verisoft/

[14] VisualThreads http://www5.compaq.com/products/software/
visualthreads/

[15] Java Modeling Language http://www.cs.iastate.edu/~leavens/JML.html

[16] SCARP example repository http://laser.cs.umass.edu/
verification-examples/

[17] LOOP tool development http://www.cs.kun.nl/~bart/LOOP/loop_tool.
html

[18] Isabelle theorem prover http://www.cl.cam.ac.uk/Research/HVG/
Isabelle/

[19] PVS Specification and Verification System http://pvs.csl.sri.com/

[20] Symbolic Model Verifier (SMV) http://www.cs.cmu.edu/~modelcheck/

125

126 BIBLIOGRAPHY

[21] Symbolic Analysis Laboratory http://verify.stanford.edu/DARPA/sal.
html

[22] http://www.cs.wisc.edu/~solomon/cs537/processes.html

[23] Doug Lea’s concurrency package http://gee.cs.oswego.edu/dl/classes/
EDU/oswego/cs/dl/util/concurrent/intro.html

[24] HEDC - HESSI Experimental Data Center http://www.hedc.ethz.ch/

[25] Graphviz http://www.research.att.com/sw/tools/graphviz/

[26] GNU General Public License (GPL) http://www.gnu.org/copyleft/gpl.
html

[27] Real-Time Systems Group, MaCware User Manual, University of Pennsylvania,
USA 2000.

[28] I. Lee, S. Kannan, M. Kim. O. Sokolsky, M. Viswanathan, Runtime Assurance
Basd On Formal Specifications, University of Pennsylvania, USA 1999.

[29] Derek Bruening. Systematic Testing of Multi-threaded Java Programs. Master’s
Thesis, MIT, May 1999

[30] Patrice Godefroid, VeriSoft Reference Manual, Bell Laboratories, Lucent Tech-
nologies, USA 2000.

[31] Patrice Godefroid, Model Checking for Programming Languages using VeriSoft,
Bell Laboratories, Lucent Technologies, USA 2000.

[32] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas
Anderson, Proceedings of the 16th ACM Symposium on Operating System Prin-
ciples, pp. 27-37, Saint Malo, France, October 1997.

[33] Gerard J. Holzmann, Design And Validation Of Computer Protocols, Prentice
Hall, USA 1991.

[34] Corina S. Pasareanu, Matthew B. Dwyer, and Willem Visser, Finding Feasible
Counter-examples when Model Checking Abstracted Java Programs, USA 2000.

[35] J.C. Corbett, M.B. Dwyer, J. Hatcliff, and Robby, Bandera: A source-level inter-
face for model checking Java programs. In Proc. 22nd International Conference
on Software Engineering, June 2000.

[36] K. Rustan M. Leino, Greg Nelson, and James B. Saxe. ESC/Java User’s Manual.
Technical Note 2000-002, Compaq Systems Research Center, October 2000.

[37] K. Rustan M. Leino, James B. Saxe, and Raymie Stata, Checking Java programs
via guarded commands. Technical Note 1999-002, Compaq Systems Research
Center, May 1999.

[38] David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and James B. Saxe, Extended
Static Checking, Compaq Systems Research Center, December 1998.

[39] Gerard J. Holzmann, Margaret H. Smith, A Practical Method for Verifying Event-
Driven Software, Bell Laboratories, USA 2000.

BIBLIOGRAPHY 127

[40] Klaus Havelund, Java PathFinder User Guide, NASA Ames Research Center,
USA 1999.

[41] Willem Visser, Klaus Havelund, Guillaume Brat, SeungJoon Park, Model Check-
ing Programs, NASA Ames Research Center, USA 1999.

[42] Guillaume Brat, Klaus Havelund, SeungJoon Park, Willem Visser, Java
PathFinder, Second Generation of a Java Model Checker, NASA Ames Research
Center, USA 2000.

[43] Dawson Engler, Benjamin Chelf, Andy Chou, and Seth Hallem, Checking System
Rules Using System-Specific, Programmer-Written Compiler Extensions, Stan-
ford University, USA 2000.

[44] Thomas Ball, Sagar Chaki, Sriram K. Rajamani, Parametrized Verification of
Multithreaded Software, Microsoft Research, USA 2000.

[45] Gary T. Leavens, Clyde Ruby: Safely Creating Correct Subclasses without Seeing
Superclass Code, OOPSLA 2000 proceedings, USA 2000.

[46] James C. Corbett, Evaluating Deadlock Detection Methods for Concurrent Soft-
ware. IEEE transactions on software engineering, Vol. 22, No. 3, March 1996.

[47] Scott Oaks, Henry Wong, Java Threads, O’Reilly, USA 1997.

[48] David Flanagan, Java In A Nutshell, 3rd Ed., O’Reilly, USA 1999.

[49] James Gosling, Bill Joy, Guy Steele, Gilad Bracha, The Java Language Specifi-
cation, 2nd Ed., Addison-Wesley, USA 2000.

[50] Tim Lindholm, Frank Jellin, The Java Virtual Machine Specification, Second Edi-
tion, Addison-Wesley, USA 1999.

[51] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns. Elements of
Reusable Object-Oriented Software, Addison-Wesley, USA 1994.

[52] McCabe, T., A software complexity measure, IEEE transactions on software engi-
neering SE-2(4), pp. 308–20, 1976.

[53] Abraham Silberschatz, Greg Gagne, Peter Baer Galvin, Applied Operating Sys-
tems Concepts, 1st edition, USA 2000.

[54] Eleftherios Koutsofious, Drawing graphs with dot. AT&T Bell Laboratories, USA
1996.

[55] Norman E. Fenton, Shari Lawrence Pfleeger, Software Metrics – a rigoruous &
practical approach, 2nd Ed., Thomson Computer Press, USA 1996.

[56] IEEE, IEEE Standard 729: Glossary of Software Engineering Terminology, IEEE
Computer Society Press, 1983.

[57] Turing, A. M., On computable numbers with an application to the Entschei-
dungsproblem, Proc. London Math. Soc. 42, 230–265 and 43, 544–546.

Index

aliasing problem, 5, 25, 35, 50
applicability, 4

Bandera, 9, 75

call graph, 4, 33–38
extended, 37, 43

deadlock, 2, 14–16, 20, 22, 25, 34–38
dynamic checkers, 11, 48, 72–74
dynamic checking, 3, 56

Eraser, 74
error, 1
ESC/Java, 9, 22, 31, 76

annotations, 23

failure, 1
fault, 1
FeaVer, 9, 76
Flavers, 9, 77

incompleteness, 4

Java PathFinder, see JPF
Jlint, 9, 25, 31, 78

application, 44
code changes, 38
extensions, 33

implementation, 34
future extensions, 52

JML/LOOP, 10, 81
JPF, 9, 78

livelock, 2
lock, 2, 5

change analysis, 34, 38
graph, 2

LockLint, 10, 79

MaC, 8, 19, 72
MC, 10, 80

model checking, 4

non-determinism, 1, 48
notify, 17, 33, 36

race condition, 2, 14–17, 20, 22, 25,
33–38

Rivet, 8, 20, 30, 72

scheduling, 1, 20, 48
SLAM, 10, 80
software metrics, 13
soundness, 4
Spin, 9, 74
static checkers, 11, 49, 75–81

design, 53
usage, 50

static checking, 4, 57
statistics, 26, 60–70
synchronized block, 25–30, 34–38,

54, 82
synchronized method, 25–30

testing, 1
theorem proving, 4
thread-safe, 1

Verisoft, 8, 73
VisualThreads, 8, 20, 31, 74

wait, 17, 33, 36

128

